SAVING
EPSON

S1D13806 Embedded Memory Display Controller

Programming Notes and Examples

Document Number: X28B-G-003-04

Copyright © 2001 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in
evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any
representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain
material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. All other trademarks are the property of their respective owners.

Page 2 Epson Research and Development
Vancouver Design Center

THIS PAGE LEFT BLANK

S1D13806 Programming Notes and Examples
X28B-G-003-04 Issue Date: 01/02/26

Epson Research and Development Page 3
Vancouver Design Center
Table of Contents
1 Introduction e e e e e e e 11
2 Initialization L e e e 12
3 Memory Models e e e 16
3.1 Display Buffer Location . 16
3.2 Memory Organization for 4 Bpp (16 Colors/16 Gray Shad&s) 16
3.3 Memory Organization for 8 Bpp (256 Colors/16 Gray Shades) . 17
3.4 Memory Organization for 16 Bpp (65536 Colors/64 Gray Shades) . 18
4 Look-Up Table (LUT) 19
4.1 Registers 19
4.2 LookUpTabIeOrgamzaIlon e e e e e e 20
421 ColorModes. e e 21
422 GrayShadeModes 24
5 Virtual Displays e e 26
5.1 Virtual Display . . 26
511 RegISES. . . . o e e e e e 27
512 EXamples e e 28
5.2 Panning and Scrolling e e e e e 30
521 RegISES. e e e 31
522 EXamples e e e 33
6 PowerSaveMode. 35
6.1 Overview . 35
6.2 Registers . 35
6.2.1 Enabling Power Save Mode 35
6.22 Power SaveStatusBits 36
6.3 Enabling Power Save Mode . 37
6.4 Disabling Power Save Mode . . 37
7 LCD Power SeqUEeNnCINg v vt 38
7.1 Enabling the LCD Panel . 39
7.2 Disabling the LCD Panel 39
8 Hardware Cursor/lInk Layer e 40
8.1 Introduction . 40
8.2 Registers .41
8.3 Initialization . . .47
831 Memory Consderatlons 47
832 EXamples e 48
8.4 Writing Cursor/Ink Layer Images . . 50
Programming Notes and Examples S1D13806

Issue Date: 01/02/26

X28B-G-003-04

Page 4 Epson Research and Development
Vancouver Design Center

8.4.1 Hardware Cursor/Ink Layer DataFormat 50
842 Cursorimage e 51
843 InkLayerimage e e e 52

8.5 Cursor Movement . .53
8.5.1 Move Cursor in Landscape Mode (norotation) 53
8.5.2 MoveCursorin SwivelView 90° Rotation 54
8.5.3 MoveCursorin SwivelView 180° Rotation 54
8.5.4 Move Cursorin SwivelView 270° Rotation 55

9 SwivelView™ . e e 56
9.1 S1D13806 SwivelView .56
9.2 Registers . 57
9.3 Limitations . .58
94 Examples.59
9.5 Simultaneous Display Considerations . . .60
10 2D BItBLT ENgine e 61
10.1 Registers61
10.2 BIitBLT Descriptions . .68
10.2.1 WriteBitBLTWithROP 69
10.22 Color Expand BitBLT e 72
10.2.3 Color Expand BitBLT With Transparency 76
1024 SolidFill BitBLT o o 77
10.25 MoveBIitBLT inaPositive DirectionwithROP 78
10.2.6 MoveBIitBLT in Negative DirectionwithROP 80
10.2.7 Transparent Write BitBLT e 82
10.2.8 Transparent Move BitBLT in Positive Direction 85
10.2.9 PatternFill BitBLTWithROP 86
10.2.10 Pattern Fill BitBLT withTransparency v v v v i i v oo e . 88
10.2.11 MoveBitBLT with Color Expansion 91
10.2.12 Transparent Move BitBLT with Color Expansion 92
10213 Read BitBLT 93
10.3 S1D13806 BitBLT Synchronization .95
10.4 S1D13806 BitBLT Known Limitations . .96
10.5 Sample Code .96

S1D13806
X28B-G-003-04

Programming Notes and Examples
Issue Date: 01/02/26

Epson Research and Development Page 5
Vancouver Design Center

11 CRT/TV Considerations 0 i e e e e e e 97

11.1 CRT Considerations . Ce e 97

11.1.1 Generating CRT t|m|nQSW|th 1386CFG e 97

11.1.2 DACOutputLevel Selection 97

1113 Examples 98

11.2 TV Considerations e e e 98

1122 NTSCTIMINGS o o o e e e e e e e e e e s e e e 98

1122 PALTIMINGS . . o o o e e e e e e e e e e e e e e e 98

1123 TV Flters 99

1124 EXamples o 100

11.3 Simultaneous Display . . 100

12 MediaPlug 101

12.1 Programming . .101

12.2 Considerations . . 102

13 Identifying the S1D13806 e e e 103

14 Hardware Abstraction Layer (HAL) 104

14.1 API for 1386HAL . . 104

14.2 Initidization . e e e .109

14.2.1 General HAL Support 112

1422 Advanced HAL Functions. e 117

14.2.3 SurfaceSupport e e 119

1424 ReQISIEr ACCESS . . . & v v e e e e e e e e e e e e e e 122

1425 MemOry ACCESS . . . o v v o i e e e e e e e e e e e 124

14.2.6 Color Manipulation 126

14.27 Virtua Display e e e 130

1428 Drawing o o e e 132

1429 Hardware CUrSOr v o o o o e e e e e e e e e 138

14210 InK Layer 145

14.2.11 Register/Display Memory e 152

14.3 Porting LIBSE to a new target platform . .153

14.3.1 Building the LIBSE library for SH3 target example 154

14.3.2 Building acomplete application for thetargetexample 154

15 Sample Code e e 155
Programming Notes and Examples S1D13806
Issue Date: 01/02/26 X28B-G-003-04

Page 6 Epson Research and Development
Vancouver Design Center

THIS PAGE LEFT BLANK

S1D13806 Programming Notes and Examples
X28B-G-003-04 Issue Date: 01/02/26

Epson Research and Development Page 7
Vancouver Design Center
List of Tables

Table2-1: S1D13806 Initidlization Sequence o 12
Table4-1: Look-Up Table Configurations 20
Table4-2: Suggested LUT Valuesto Simulate VGA Default 16 Color Palette 21
Table4-3: Suggested LUT Valuesto Simulate VGA Default 256 Color Palette 22
Table4-4: Suggested LUT Valuesfor4BppGrayShade 24
Table5-1: Number of Pixels Panned When Start AddressChangedBy 1 31
Table5-2: ActivePixel PanBits 32
Table8-1: Ink/Cursor Mode o e 41
Table8-2: Cursor/Ink Start AddressEncoding 41
Table8-3: LCD Hardware Cursor InitidlizationSequence 48
Table8-4: Ink Layer Start AddressEncoding 49
Table8-5: LCD Ink Layer InitidlizationSequence 49
Table8-6: Ink/Cursor Color Select e 50
Table9-1: SwivelView EnableBits. 57
Table9-2: LCD Memory AddressOffsetValues 57
Table9-3: LCD Display Start AddressValues it 58
Table 10-1: BitBLT ROP Code/Color Expansion Function Selection 63
Table 10-2: BitBLT Operation Selection i 64
Table 10-3: BitBLT Source Start Address Selection 65
Table 10-4: Possible BitBLT FIFOW rites e e e e e e e e e 71
Table 10-5: Possible BitBLT FIFOWrites e e e e e e e 76
Table 10-6: Possible BitBLT FIFOWrites e e e e e 84
Table10-7: Possible BitBLT FIFOReads et 95
Table14-1: HAL Functions e 104

Programming Notes and Examples S1D13806

Issue Date: 01/02/26

X28B-G-003-04

Page 8 Epson Research and Development
Vancouver Design Center

THIS PAGE LEFT BLANK

S1D13806 Programming Notes and Examples
X28B-G-003-04 Issue Date: 01/02/26

Epson Research and Development
Vancouver Design Center

Page 9

Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 5-1:
Figure 8-1:
Figure 10-1:
Figure 14-1.

List of Figures

Pixel Storagefor 4 Bpp in One Byte of Display Buffer 16
Pixel Storagefor 8 Bpp in One Byteof Display Buffer 17
Pixel Storagefor 16 Bpp in Two Bytesof Display Buffer 18
Viewport InsideaVirtual Display, 26
Hardware Cursor/Ink Layer DataFormat 50
MoveBItBLT USage o o e e 78
Components needed to build 1386 HAL application 153

Programming Notes and Examples

Issue Date: 01/02/26

S1D13806

X28B-G-003-04

Page 10 Epson Research and Development
Vancouver Design Center

THIS PAGE LEFT BLANK

S1D13806 Programming Notes and Examples
X28B-G-003-04 Issue Date: 01/02/26

Epson Research and Development Page 11

Vancouver Design Center

1 Introduction

This guide provides information on programming the S1D13806 Embedded Memory
Display Contraller. Included are algorithms which demonstrate how to program the
S1D13806. This guide discusses Power-on Initialization, Panning and Scrolling, LUT
initialization, LCD Power Sequencing, SwivelView™, etc. The example source code refer-
enced in this guide is available on the web at www.erd.epson.com.

This guide also introduces the Hardware Abstraction Layer (HAL), which is designed to
simplify the programming of the S1D13806. Most S1D1350x, S1D1370x, and S1D1380x
products have HAL support, thus allowing OEMs to do multiple designs with a common
code base.

This document will be updated as appropriate. Please check the EPSON Electronics
Americawebsite at www.eea.epson.com, or the EPSON Research and Development
website at www.erd.epson.com for the latest revision of this document and source before
beginning any development.

We appreciate your comments on our documentation. Please contact us viaemail at
documentation@erd.epson.com.

Programming Notes and Examples S1D13806

Issue Date: 01/02/26

X28B-G-003-04

Page 12

Epson Research and Development
Vancouver Design Center

2 Initialization

This section describes how to initialize the S1D13806. Sample code for performing initial-
ization of the S1D13806 is provided in the file init1386.c, which is part of thefile
86sample.zip and available on the internet at www.erd.epson.com.

S1D13806 initialization can be broken into three steps.

« Enable the S1D13806 controller (if necessary identify the specific controller).

e Set al the registersto their initial values.

* Program the Look-Up Table (LUT) with color values. This section does not deal with
programming the LUT, for details see Section 4, “Look-Up Table (LUT)” .

The simplest way to generate initialization tables for the S1D13806 is to use the utility
program 1386¢fg.exe which to generates a header file that can be used by Windows CE or
the HAL. Otherwise modify theinit1386.c file directly.

The following table represents the sequence and values written to the S1D13806 registers

to control a configuration with these specifications:

» 640x480 color format 1 dual passive LCD @ 78Hz.

16-bit datainterface.

8 bit-per-pixel (bpp) color depth - 256 colors.

40 MHz input clock CLKI.

CLKI used for BUSCLK (1:1); PCLK (2:1); MCLK (1:1).
Embedded SDRAM.

Table 2-1: S1D13806 Initialization Sequence

Register Value Notes See Also
[001h] 0000 0000 |Enable the Memory/Register Select Bit.
isable the display outputs.
[LFCh] | 0000 0000 |Disable the displ
[004h] | 0000 0000
[005h] 0000 0000 |Setup GPIO as inputs; force low if outputs. The OEM may wish
GPIO for other purposes which our example does not
[008h] | 0000 0000 |accommodate for.
[009h] | 0000 0000
Program the Clock Source selects.
[010h] | 0000 0000 |In this case we have a single input clock source attached to the
CLKI pin. This example uses this as BUSCLK, as MCLK and
[014h] 0001 0000 divide by 2 for PCLK. The CRT clock and MediaPlug clocks are
[018h] 0000 0010 |setto CLKI2 reducing power consumption (there is no CLKI2 in
[01Ch] | 0000 0010 this example). If either the CRT or MediaPlug is to be used an
input clock must be enabled before accessing the control
registers or LUT.
[01Eh] | 0000 0001 (Program CPU Wait States. see REG[01Eh] for details
S1D13806 Programming Notes and Examples

X28B-G-003-04

Issue Date: 01/02/26

Epson Research and Development
Vancouver Design Center

Page 13

Table 2-1: S1D13806 Initialization Sequence (Continued)

Register Value Notes See Also

[020h] 1000 0000 Program the Frame Buffer Memory Configuration
Registers.

[021h] | 0000 0011 see REG[020h] -

[02Ah] | 0000 0000 REG[02Bh] for details

[02Bh] | 0000 0001

[030n] | 00100110 |Program the LCD Panel type and Panel Timing Registers.

[031h] 0000 0000 |Panel width = 16-bit; Color Format = don't care; Color Panel
selected; Dual Panel selected; Passive LCD selected.

[032h] | 01001111
MOD rate = don't care;

[034h] | 0001 1111))]
Display width = 640 pixels = 4Fh.

[035h] | 0000 0000)))))
Horizontal and Vertical Non-display time has been adjusted to

(036h] 0000 0000 provide 78Hz frame rate.

(038h] 11011111 |TFT FPLINE registers = don't care for passive panels.

[039h] 0000 0001 Display height = 480 therefore register = 1DFh

[03Ah] | 00101100 |TET FPFRAME = don't care for passive panels.

[03Bh] | 0000 0000

[03Ch] | 0000 0000

[040h] 0000 0003 |Program the Display Output Format and Start Locations for
the LCD output. This includes programming the FIFOs.

[041h] | 0000 0000 .
Select 8 bpp in REG[040h]

[042h] | 0000 0000))
Ensure that the Dual Panel Buffer is enabled REG [41h] bit 0 =

[043h] | 00000000 |q

[044h] | 00000000 |LCD Start Address should typically be from location 0 in the

[046h] | 01000000 |frame buffer.

[047h] | 0000 0001 Pixel Pan register is 0 for normal operation.

[048h] | 00000000 |Memory offset register is set to ‘the panel width for normal
operation, therefore 640 + 2 for words = 320 words= 140h

[04Ah] | 00000000 |\ords

[04Bh] | 00000000 |set FIFO values to O for “automatic” calculation.

[050h] 0000 0000 |Program the CRT/TV Timing control registers.

[052h] 0000 0000 |All values are = don't care for this example.

[053h] | 0000 0000

[054h] | 0000 0000

[056h] | 0000 0000

[057h] | 0000 0000

[058h] | 0000 0000

[059h] | 0000 0000

[05Ah] | 0000 0000

[05Bh] | 0000 0000

Programming Notes and Examples

Issue Date: 01/02/26

S1D13806
X28B-G-003-04

Page 14 Epson Research and Development
Vancouver Design Center
Table 2-1: S1D13806 Initialization Sequence (Continued)
Register Value Notes See Also
[060R] | 0000 0000 |program the CRT/TV Display Output Format and
[062h] 0000 0000 |Configuration Registers including the FIFOs.
[063h] | 0000 0000
[064h] | 0000 0000 |For this example, these values are = don't care.
[066h] | 0000 0000
[067h] | 0000 0000
[068h] | 0000 0000
[06Ah] | 0000 0000
[06Bh] | 0000 0000
[070h] | 0000 0000 Program the LCD Ink Layer/Cursor Control, Position, Color
[071h] 0000 0000 |and FIFO registers.
[072h] | 0000 0000
[073h] 0000 0000 |For this example, since no Ink Layer or Cursor is used, these
[074h] 0000 0000 registers are = don't care.
[075h] | 0000 0000
[076h] | 0000 0000
[077h] | 0000 0000
[078h] | 0000 0000
[07Ah] | 0000 0000
[07Bh] | 0000 0000
[07Ch] | 0000 0000
[07Eh] | 0000 0000
[080h] | 0000 0000 |Program the CRT/TV Ink Layer/Cursor Control, Position,
Color and FIFO registers.
[081h] | 0000 0000
[082h] | 0000 0000
For this example, since no Ink Layer or Cursor is used, these
[083h] 0000 0000 registers are = don't care.
[084h] | 0000 0000
[085h] | 0000 0000
[086h] | 0000 0000
[087h] | 0000 0000
[088h] | 0000 0000
[08Ah] | 0000 0000
[08Bh] | 0000 0000
[08Ch] | 0000 0000
[08Eh] | 0000 0000
S1D13806 Programming Notes and Examples

X28B-G-003-04

Issue Date: 01/02/26

Epson Research and Development
Vancouver Design Center

Page 15

Table 2-1: S1D13806 Initialization Sequence (Continued)

Register Value Notes See Also
[100h] 0000 0000 Etr;tifam the 2D acceleration (BitBLT) registers to a known
[101h] | 0000 0000
[102h] | 0000 0000
[103h] | 0000 0000
[104h] | 0000 0000
[105h] | 0000 0000
[106h] | 0000 0000
[108h] | 0000 0000
[109h] | 0000 0000
[10Ah] | 0000 0000
[10Ch] | 0000 0000
[10Dh] | 0000 0000
[110h] | 0000 0000
[1112h] | 0000 0000
[112h] | 0000 0000
[113h] | 0000 0000
[114h] | 0000 0000
[115h] | 0000 0000
[118h] | 0000 0000
[119h] | 0000 0000
[LEOJh | 0000 0001 Program the Look-Up Table to a known state. see Section Section 4.
[1E2h] | 00000000 |Selects LUT access to the LCD LUT only. Programming the |« qok-Up Table (LUT)” on
Look-Up Table is dealt with in a separate section of this page 19.
[1E4h] | 00000000 |gocument. The init1386.c file shows the example.
[LFoh]] | 0001 0000 Turn off Power Save Mode.
Sets reserved bit to 1.
[1F4h] | 0000 0000 |Disable Watchdog Timer.)
Enable the Display.
For this example, enable the LCD panel only. Note that the
[1FCh] | 00000001 || cD Power Sequencing procedures outlined in Section 7.1, |See€ REG[1FCh]
“Enabling the LCD Panel” should be used when enabling
the LCD panel.

Programming Notes and Examples

Issue Date: 01/02/26

S1D13806
X28B-G-003-04

Page 16

Epson Research and Development
Vancouver Design Center

3 Memory Models

The S1D13806 is capable of several color depths. The memory model for each color depth
is packed pixel. The S1D13806 supports 4, 8, and 16 bit-per-pixel (bpp) memory models.

3.1 Display Buffer Location

The S1D 13806 supports adisplay buffer of 1.25M byte embedded SDRAM. The display
buffer is memory mapped and is accessible directly by software. The memory block
location assigned to the S1D 13806 display buffer varies with each individual hardware
platform.

For further information on the display buffer, see the SID13806 Hardware Functional
Soecification, document number X 28B-A-001-xx.

3.2 Memory Organization for 4 Bpp (16 Colors/16 Gray Shades)

Bit 7

Bit 6

Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O

Pixel 0 Pixel 1
Bits 3-0 Bits 3-0

Figure 3-1: Pixel Sorage for 4 Bpp in One Byte of Display Buffer

In this memory format each byte of display buffer contains two adjacent pixels. Setting or
resetting any pixel will require reading the entire byte, masking out the upper or lower
nibble (4 bits) and setting the appropriate bitsto 1.

Four bit pixels provide 16 gray shades/color possibilities. For monochrome panelsthe gray
shades are generated by indexing into the first 16 elements of the green component of the
Look-Up Table (LUT). For color panelsthe 16 colors are derived by indexing into the first
16 positions of the LUT.

S1D13806

X28B-G-003-04

Programming Notes and Examples
Issue Date: 01/02/26

Epson Research and Development Page 17
Vancouver Design Center

3.3 Memory Organization for 8 Bpp (256 Colors/16 Gray Shades)

Bit 7

Bit 6

Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Pixel 0
Bits 7-0

Figure 3-2: Pixel Sorage for 8 Bpp in One Byte of Display Buffer

At acolor depth of eight bpp each byte of display buffer representsone pixel onthedisplay.
At this color depth the read-modify-write cycles of 4 bpp are eliminated making the update
of each pixel faster.

Each byte indexes into one of the 256 positions of the LUT. The S1D13806 LUT supports
four bits per primary color. Thistranslates into 4096 possible colors when color modeis
selected. Therefore the displayed mode has 256 colors avail able out of a possible 4096.

When a monochrome panel is selected, the green component of the LUT is used to

determine the gray shade intensity. The green indices, with only four bits, can resolve 16
gray shades.

Note
When a monochrome panel (REG[030h] bit 2 = 0) is selected, a four bpp color depth
also provides 16 gray shades and uses less display buffer.

Programming Notes and Examples S1D13806

Issue Date: 01/02/26

X28B-G-003-04

Page 18

Epson Research and Development
Vancouver Design Center

3.4 Memory Organization for 16 Bpp (65536 Colors/64 Gray Shades)

Bit 15

Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

Red Component Green Component
Bits 4-0 Bits 5-3

Bit 7

Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Green Component Blue Component
Bits 2-0 Bits 4-0

Figure 3-3: Pixel Soragefor 16 Bpp in Two Bytes of Display Buffer

At acolor depth of 16 bpp the S1D13806 is capable of displaying 65536 colors. The 65536
color pixel isdivided into three parts: five bitsfor red, six bits for green, and five bits for
blue. In this mode the LUT is bypassed and output goes directly into the Frame Rate
Modulator.

When dithering isenabled (REG[041h) bit 1) thefull color rangeisavailable onal display
types. If dithering is disabled the full color rangeisonly available on TFT/D-TFD or CRT
displays. Passive LCD displaysarelimited to using the four most significant bitsfrom each
of the red, green and blue portions of each color resulting in 4096 (2* x 2* x 2%) possible

colors.

Should monochrome mode be chosen at this color depth, the output sendsthe six bits of the
green LUT component to the modulator for atotal of 64 possible gray shades. If dithering
is disabled, the maximum number of gray shadesis 16.

S1D13806
X28B-G-003-04

Programming Notes and Examples
Issue Date: 01/02/26

Epson Research and Development Page 19
Vancouver Design Center

4 Look-Up Table (LUT)

4.1 Registers

This section discusses programming the S1D13806 Look-Up Table (LUT). Includedisa
summary of the LUT registers, recommendations for color/gray shade LUT values, and
additional programming considerations. For adiscussion of the LUT architecture, refer to
the SLD 13806 Hardware Functional Specification, document number X28B-A-001-xx.

The S1D13806 isdesigned with aseparate LUT for both the LCD and CRT/TV. EachLUT
consists of 256 indexed red/green/blue entries. Each LUT entry isfour bitswide. The color
depth determines how many indices are used to output the image to the display. 4 bpp uses
thefirst 16 indices, 8 bpp uses all 256 indices, and 16 bpp color depths bypassthe LUT
entirely.

In color modes, the pixel values stored in the display buffer index directly to an RGB value
stored in the LUT. In monochrome modes, the pixel value indexes into the green
component of the LUT and the amount of green at that index controls the intensity.

M onochrome mode |ook-ups are done based on the Color/Mono Panel Select bit
(REG[030h] bit 2). The CRT interface receives the RGB values from the LUT even if
simultaneous display is used with a monochrome panel. Therefore, it isimportant to
program the R, G, and B components of the CRT LUT either with a unique set of values,
or with R, G, and B values al equivalent.

REG[1EOh] Look-Up Table Mode Register

n/a

n/a

LUT Mode LUT Mode

n/a n/a n/a n/a Bit 1 Bit 0

The S1D13806 is designed with aseparate LUT for both the LCD and CRT/TV. The LUT
M ode register selects which of the LUTs will be accessed by the CPU when reads/writes
are made to REG[1E2h] and REG[1E4h]. LUT mode selection allowsthe LUTsto be
individually written or have identical datawritten to both LUTSs. Individual writesto these
registers are useful for Epson Independent Simultaneous Display (EISD) modes where
independent images are displayed on the LCD and the CRT/TV. For further information on
Epson Independent Simultaneous Display, see the S1D13806 Hardwar e Functional Speci-
fication, document number X28B-A-001-xXx.

For normal operation, this register should be set to 00h which will read the LCD LUT and
write both the LCD and CRT/TV LUTswith identical data. For selection of other LUT
modes, see REG[1EON] in the S1D13806 Hardware Functional Specification, document
number X 28B-A-001-xx.

Programming Notes and Examples S1D13806

Issue Date: 01/02/26

X28B-G-003-04

Page 20 Epson Research and Development

Vancouver Design Center

REG[1E2h] Look-Up Table Address Register

LUT Address | LUT Address | LUT Address | LUT Address | LUT Address | LUT Address | LUT Address | LUT Address
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

The LUT address register selects which of the 256 LUT entries will be accessed. Writing
to thisregister will select the red bank. After three successive reads or writesto the data
register (REG[1E4h]) this register is automatically incremented by one.

REG[1E4h] Look-Up Table Data Register

LUT Data LUT Data LUT Data LUT Data

Bit 3 Bit 2 Bit 1 Bit 0 n/a na n/a n/a

Thisregister is where the 4-bit red/green/blue datais written to/read from. With each
successive read or write the internal bank select isincremented. Three successive reads
from this register will result in reading the red, then the green, and finally the blue values
associated with theindex set in the LUT address register.

After the third read the LUT address register isincremented and the internal bank select
points to the red bank again.

4.2 Look-Up Table Organization

* The Look-Up Tabletreatsthe value of apixel asan index into an array of colors or gray
shades. For example, a pixel value of zero would point to the first LUT entry, whereas a
pixel value of seven would point to the eighth LUT entry.

» The value contained in each LUT entry represents the intensity of the given color or
gray shade. Thisintensity can rangein value between 0 and OFh.

* The S1D13806 Look-Up Tableislinear. This means increasing the LUT entry number
resultsin alighter color or gray shade. For example, aLUT entry of OFh in the red bank
resultsin bright red output while a LUT entry of 05h resultsin dull red.

Table 4-1: Look-Up Table Configurations

X28B-G-003-04

Programming Notes and Examples
Issue Date: 01/02/26

Effective Gray Effective Gray
. o Shades/Colors on an Shades/Colors on a
Display Mode 4-Bit Wide Look-Up Table Passive Panel With Passive Panel With
Dithering Disabled Dithering Enabled
RED GREEN BLUE
4 bpp gray 16 16 gray shades 16 gray shades
8 bpp gray 16 16 gray shades 16 gray shades
16 bpp gray 16 gray shades 64 gray shades
4 bpp color 16 16 16 16 colors 16 colors
8 bpp color 256 256 256 256 colors 256 colors
16 bpp color 4096 colors 65536 colors
= Indicates the Look-Up Table is not used for that display mode
S1D13806

Epson Research and Development

Vancouver Design Center

Page 21

4.2.1 Color Modes

In color display modes, the number of LUT entries used is automatically selected
depending on the color depth.

4 bpp color

When the S1D13806 is configured for 4 bpp color mode thefirst 16 entriesinthe LUT are
used. Each byte in the display buffer contains two adjacent pixels. The upper and lower

nibbles of the byte are used asindices into the LUT.

The following table shows LUT values that will simulate those of aVVGA operating in 16

color mode.

Table 4-2: Suggested LUT Valuesto Smulate VGA Default 16 Color Palette

Index Red Green Blue
00 00 00 00
01 00 00 0A
02 00 0A 00
03 00 0A 0A
04 0A 00 00
05 0A 00 0A
06 0A 0A 00
07 0A 0A 0A
08 00 00 00
09 00 00 OF
0A 00 OF 00
0B 00 OF OF
ocC OF 00 00
oD OF 00 OF
OE OF OF 00
OF OF OF OF
10 00 00 00

00 00 00
FF 00 00 00

l:lz Indicates unused entries in the LUT

Programming Notes and Examples

Issue Date: 01/02/26

S1D13806
X28B-G-003-04

Page 22

Epson Research and Development
Vancouver Design Center

8 bpp color

When the S1D 13806 is configured for 8 bpp color modeall 256 entriesinthe LUT are used.
Each byte in the display buffer correspondsto one pixel and is used as an index value into
the LUT.

The S1D13806 LUT has four bits (16 intensities) of intensity control per primary color
while a standard VGA RAMDAC has six bits (64 intensities). This four to one difference
must be considered when attempting to match colors between aVGA RAMDAC and the
S1D13806 LUT. (i.e. VGA levels0- 3mapto LUT level O, VGA levels4 - 7mapto LUT
level 1...). Additionally, the significant bits of the color tablesarelocated at different offsets
withintheir respective bytes. After cal cul ating the equivalent intensity val uethe result must
be shifted into the correct bit positions.

Thefollowing table shows LUT valuesthat will approximatethe VGA default color palette.

Table 4-3: Suggested LUT Values to Smulate VGA Default 256 Color Palette

Index R G B Index R G B Index R G B Index R G B
00 00 00 00 40 FO 70 70 80 30 30 70 Co 00 40 00
01 00 00 A0 41 FO 90 70 81 40 30 70 C1l 00 40 10
02 00 A0 00 42 FO BO 70 82 50 30 70 Cc2 00 40 20
03 00 A0 A0 43 FO DO 70 83 60 30 70 C3 00 40 30
04 A0 00 00 44 FO FO 70 84 70 30 70 C4 00 40 40
05 A0 00 A0 45 DO FO 70 85 70 30 60 C5 00 30 40
06 A0 50 00 46 BO FO 70 86 70 30 50 C6 00 20 40
07 A0 A0 A0 47 90 FO 70 87 70 30 40 Cc7 00 10 40
08 50 50 50 48 70 FO 70 88 70 30 30 C8 20 20 40
09 50 50 FO 49 70 FO 90 89 70 40 30 C9 20 20 40
OA 50 FO 50 4A 70 FO BO 8A 70 50 30 CA 30 20 40
0B 50 FO FO 4B 70 FO DO 8B 70 60 30 CB 30 20 40
ocC FO 50 50 4C 70 FO FO 8C 70 70 30 cC 40 20 40
0D FO 50 FO 4D 70 DO FO 8D 60 70 30 CD 40 20 30
OE FO FO 50 4E 70 BO FO 8E 50 70 30 CE 40 20 30
OF FO FO FO 4F 70 90 FO 8F 40 70 30 CF 40 20 20
10 00 00 00 50 BO BO FO 90 30 70 30 DO 40 20 20
11 10 10 10 51 CO BO FO 91 30 70 40 D1 40 20 20
12 20 20 20 52 DO BO FO 92 30 70 50 D2 40 30 20
13 20 20 20 53 EO BO FO 93 30 70 60 D3 40 30 20
14 30 30 30 54 FO BO FO 94 30 70 70 D4 40 40 20
15 40 40 40 55 FO BO EO 95 30 60 70 D5 30 40 20
16 50 50 50 56 FO BO DO 96 30 50 70 D6 30 40 20
17 60 60 60 57 FO BO CO 97 30 40 70 D7 20 40 20
18 70 70 70 58 FO BO BO 98 50 50 70 D8 20 40 20
19 80 80 80 59 FO Cco BO 99 50 50 70 D9 20 40 20
1A 90 90 90 5A FO DO BO 9A 60 50 70 DA 20 40 30
1B A0 A0 AO 5B FO EO BO 9B 60 50 70 DB 20 40 30
1C BO BO BO 5C FO FO BO 9C 70 50 70 DC 20 40 40
1D CO CO CO 5D EO FO BO aD 70 50 60 DD 20 30 40
1E EO EO EO 5E DO FO BO 9E 70 50 60 DE 20 30 40

S1D13806 Programming Notes and Examples

X28B-G-003-04

Issue Date: 01/02/26

Epson Research and Development Page 23
Vancouver Design Center
Table 4-3: Suggested LUT Values to Smulate VGA Default 256 Color Palette (Continued)

Index R G B Index R G B Index R G B Index R G B
1F FO FO FO 5F Co FO BO oF 70 50 50 DF 20 20 40
20 00 00 FO 60 BO FO BO A0 70 50 50 EO 20 20 40
21 40 00 FO 61 BO FO Cco Al 70 50 50 El 30 20 40
22 70 00 FO 62 BO FO DO A2 70 60 50 E2 30 20 40
23 BO 00 FO 63 BO FO EO A3 70 60 50 E3 30 20 40
24 FO 00 FO 64 BO FO FO A4 70 70 50 E4 40 20 40
25 FO 00 BO 65 BO EO FO A5 60 70 50 E5 40 20 30
26 FO 00 70 66 BO DO FO A6 60 70 50 E6 40 20 30
27 FO 00 40 67 BO (0] FO A7 50 70 50 E7 40 20 30
28 FO 00 00 68 00 00 70 A8 50 70 50 E8 40 20 20
29 FO 40 00 69 10 00 70 A9 50 70 50 E9 40 30 20
2A FO 70 00 6A 30 00 70 AA 50 70 60 EA 40 30 20
2B FO BO 00 6B 50 00 70 AB 50 70 60 EB 40 30 20
2C FO FO 00 6C 70 00 70 AC 50 70 70 EC 40 40 20
2D BO FO 00 6D 70 00 50 AD 50 60 70 ED 30 40 20
2E 70 FO 00 6E 70 00 30 AE 50 60 70 EE 30 40 20
2F 40 FO 00 6F 70 00 10 AF 50 50 70 EF 30 40 20
30 00 FO 00 70 70 00 00 BO 00 00 40 FO 20 40 20
31 00 FO 40 71 70 10 00 B1 10 00 40 F1 20 40 30
32 00 FO 70 72 70 30 00 B2 20 00 40 F2 20 40 30
33 00 FO BO 73 70 50 00 B3 30 00 40 F3 20 40 30
34 00 FO FO 74 70 70 00 B4 40 00 40 F4 20 40 40
35 00 BO FO 75 50 70 00 B5 40 00 30 F5 20 30 40
36 00 70 FO 76 30 70 00 B6 40 00 20 F6 20 30 40
37 00 40 FO 77 10 70 00 B7 40 00 10 F7 20 30 40
38 70 70 FO 78 00 70 00 B8 40 00 00 F8 00 00 00
39 90 70 FO 79 00 70 10 B9 40 10 00 F9 00 00 00
3A BO 70 FO TA 00 70 30 BA 40 20 00 FA 00 00 00
3B DO 70 FO 7B 00 70 50 BB 40 30 00 FB 00 00 00
3C FO 70 FO 7C 00 70 70 BC 40 40 00 FC 00 00 00
3D FO 70 DO 7D 00 50 70 BD 30 40 00 FD 00 00 00
3E FO 70 BO 7E 00 30 70 BE 20 40 00 FE 00 00 00
3F FO 70 90 7F 00 10 70 BF 10 40 00 FF 00 00 00

16 bpp color

The Look-Up Table is bypassed at this color depth, hence programming the LUT is not
required.

Programming Notes and Examples
Issue Date: 01/02/26

S1D13806

X28B-G-003-04

Page 24

Epson Research and Development
Vancouver Design Center

4.2.2 Gray Shade Modes

This discussion of gray shade (monochrome) modes only appliesto the panel interface.
Monochrome mode is selected when REG[030h] bit 2 returns a 0. In this mode the value
output to the panel is derived solely from the green component of the LUT. The CRT/TV
image is formed from all three LUT components (RGB).

Note
In order to match the colors on aCRT/TV with the colors on a monochrome panel when
displaying identical images on the panel and CRT/TV, the red and blue components of
the LUT must be set to the same intensity as the green component.

4 bpp gray shade

The 4 bpp gray shade mode uses the green component of thefirst 16 LUT entries. The
remaining indices of the LUT are unused.

Table 4-4: Suggested LUT Values for 4 Bpp Gray Shade

Index Red Green Blue
00 00 00 00
01 10 10 10
02 20 20 20
03 30 30 30
04 40 40 40
05 50 50 50
06 60 60 60
07 70 70 70
08 80 80 80
09 90 90 90
0A A0 AO A0
0B BO BO BO
oC CO Co (60]
oD DO DO DO
OE EO EO E
OF FO FO FO
10 00 00 00
00 00 00
FF 00 00 00

Required to match CRT to panel
Unused entries

S1D13806
X28B-G-003-04

Programming Notes and Examples
Issue Date: 01/02/26

Epson Research and Development Page 25
Vancouver Design Center

8 bpp gray shade

The 8 bpp gray shade mode usesthe green component of thefirst 16 LUT entries, providing
16 possibleintensities. Thereisno increasein gray shadeswhen selecting 8 bpp mode over
4 bpp mode; however, Swivelview and the BitBLT engine can be used in 8 bpp mode but
not in 4 bpp mode.

16 bpp gray shade

The Look-Up Table is bypassed at this color depth, hence programming the LUT isnot
required.

Aswith 8 bpp there are limitations to the colors which can be displayed. In this mode six
bits of green are used to set the absolute intensity of theimage. This resultsin 64 gray
shades when dithering is enabled and 16 gray shades when dithering is disabled.

Programming Notes and Examples S1D13806
Issue Date: 01/02/26 X28B-G-003-04

Page 26 Epson Research and Development
Vancouver Design Center

5 Virtual Displays

This section discussesthe concept of avirtual display and coversnavigation withinavirtual
display using panning and scrolling.

5.1 Virtual Display

Virtual display iswheretheimageto beviewed islarger than the physical display. Thiscan
bein the horizontal, vertical or both dimensions. To view the image, the display isused as
awindow (or viewport) into the display buffer. At any given time only a portion of the
image isvisible. Panning and scrolling are used to view the full image. For further infor-
mation on panning and scrolling, see Section 5.2, “Panning and Scrolling” on page 30.

The Memory Address Offset registers determine the number of horizontal pixelsin the
virtual image. The offset registers can be set for a maximum of 2% or 2048 words. At a
color depth of 4 bpp, 2048 words cover 8,192 pixels. At acolor depth of 16 bpp, 2048 words
cover 2048 pixels.

The maximum number of lines of the virtual image isthe size of the display buffer divided
by the number of bytes per horizontal line. The number of bytes per line equal sthe number
of words in the offset register multiplied by two. At the maximum horizontal size, the
greatest number of linesthat can be displayed using 1.25M bytes of display memory is 320.
Reducing the horizontal size makes more display buffer available, thusincreasing the
available virtual vertical size.

In addition to the calculated limit, the virtual vertical sizeislimited by the size and location
of the Dual Panel Buffer and the Ink Layer/Hardware Cursor (if present).

The maximum horizontal/vertical sizes are seldom used. Figure 5-1: “Viewport Inside a
Virtual Display,” showsamoretypical use of avirtual display. With adisplay panel of
320x240 pixels, an image of 640x480 pixels can be viewed by navigating a 320x240 pixel
viewport around the image using panning and scrolling.

320x240 —
Viewport

640x480
“Virtual” Display

Figure 5-1: Viewport Inside a Virtual Display

S1D13806 Programming Notes and Examples
X28B-G-003-04 Issue Date: 01/02/26

Epson Research and Development Page 27
Vancouver Design Center
5.1.1 Registers
REG[046h] LCD Memory Address Offset Register 0
LCD Memory | LCD Memory | LCD Memory | LCD Memory | LCD Memory | LCD Memory | LCD Memory | LCD Memory
Address Address Address Address Address Address Address Address
Offset Bit 7 Offset Bit 6 Offset Bit 5 Offset Bit 4 Offset Bit 3 Offset Bit 2 Offset Bit 1 Offset Bit 0
REG[047h] LCD Memory Address Offset Register 1
LCD Memory | LCD Memory | LCD Memory
n/a n/a n/a n/a n/a Address Address Address
Offset Bit 10 | Offset Bit 9 Offset Bit 8

These registers form the 11-bit memory address offset for the LCD display. This offset
equals the number of words from the beginning of one line of the LCD display to the
beginning of the next line.

To maintain a constant virtual width as color depth changes, the memory address offset
must also change. At a color depth of 4 bpp each word contains 4 pixels, at 16 bpp each
word contains one pixel. The formulato determine the value for the memory address
regisersis:
Offset = PixelsPerVirtuaLine + PixelsPerWord
This value may not necessarily represent the number of words shown on the LCD display.
Thisisthe virtual width of the display image and may be greater than or equal to the
physical display width. If PixelsPerVirtualLine equals the physical display width as set in
the LCD Horizontal Display Width register (REG[032h]), then the virtual display and
physical display are the same size.

Programming Notes and Examples

Issue Date: 01/02/26

S1D13806
X28B-G-003-04

Page 28

Epson Research and Development
Vancouver Design Center

REG[066h] CRT/TV Memory Address Offset Register O

CRT/TV CRT/TV CRT/TV CRT/TV CRT/TV CRT/TV CRT/TV CRT/TV

Memory Memory Memory Memory Memory Memory Memory Memory

Address Address Address Address Address Address Address Address
Offset Bit 7 Offset Bit 6 Offset Bit 5 Offset Bit 4 Offset Bit 3 Offset Bit 2 Offset Bit 1 Offset Bit 0

REG[067h] CRT/TV Memory Address Offset Register

CRT/TV CRT/TV CRT/TV

Memory Memory Memory

n/a n/a n/a n/a n/a Address Address Address
Offset Bit 10 Offset Bit 9 Offset Bit 8

5.1.2 Examples

These registersform the 11-bit memory address offset for the CRT/TV display. This offset
equals the number of words form the beginning of one line of the CRT/TV display to the
beginning of the next line.

To maintain a constant virtual width as color depth changes, the memory address offset
must also change. At a color depth of 4 bpp each word contains 4 pixels, at 16 bpp each
word contains one pixel. The formulato determine the value for the memory address
registersis:

Offset = PixelsPerVirtualLine + PixelsPerWord

This value may not necessarily represent the number of words shown on the CRT/TV
display. Thisisthe virtual width of the display image and may be greater than or equal to
the physical display width. If PixelsPerVirtual Line equal s the physical display width as set
inthe CRT/TV Horizontal Display Width register (REG[050h]), then the virtual display
and physical display are the same size.

Example 1: Determine the offset value required for a line of 800 pixels at a color
depth of 8 bpp.

At acolor depth of 8 bpp each byte contains one pixel, therefore each word contains two
pixels.

PixelsPerWord =16+ bpp
=16+8
=2

To calculate the offset value for this example, the following formulais used.

Offset = PixelsPerVirtualLine + PixelsPerWord
=800+2
=400
= 190h words

For the LCD, REG[047h] is set to 01h and REG[046h] is set to 90h.
For the CRT/TV, REG[067h] is set to 01h and REG[066h] is set to 90h.

S1D13806
X28B-G-003-04

Programming Notes and Examples
Issue Date: 01/02/26

Epson Research and Development Page 29

Vancouver Design Center

Example 2: Program the Memory Address Offset Registers to support a 16 color (4

bpp) 800x600 virtual display on a 640x480 LCD panel.

To createavirtual display the offset registers must be programmed to the horizontal size of
thelarger “virtual” image. After determining the amount of memory used by each line (see
example 1), calculate whether there is enough memory to support the desired number of
lines.

1

Initialize the S1D13806 registers for a 640x480 panel. (See Section 2, “Initialization”
on page 12).

Calculate the number of pixels per word.

PixelsPerWord =16+ bpp
=16+4
=4

Determine the offset register value.

Offset = PixelsPerVirtualLine + PixelsPerWord
=800+4
= 200 words
= 0C8h words

For the LCD, REG[047h] is set to 00h and REG[046h] is set to C8h.
For the CRT/TV, REG[067h] is set to 00h and REG[066h] is set to C8h.

To confirm whether there is enough memory for the required virtual height, the
following formulais used.

MemoryRequired = WordsPerVirtualLine x 2 x NumberOfLines
=200 x 2 x 600
= 240,000 bytes

The S1D13806 contains 1.25M bytes of embedded SDRAM (or 1,310,720 bytes). As
long as the calculated value is less than this, it is safe to continue with these values.

Programming Notes and Examples
Issue Date: 01/02/26

S1D13806
X28B-G-003-04

Page 30

Epson Research and Development
Vancouver Design Center

5.2 Panning and Scrolling

Theterms panning and scrolling refer to the actions used to move aviewport about avirtual
display. Although the entire image is stored in the display buffer, only aportion isvisible
at any given time.

Panning describesthe horizontal (sideto side) motion of the viewport. When panning to the
right the image in the viewport appears to slide to the left. When panning to the left the
imageto appearsto slideto theright. Scrolling describesthe vertical (up and down) motion
of the viewport. Scrolling down causes the image to appear to slide up and scrolling up
causes the image to appear to slide down.

Both panning and scrolling are performed by modifying the start addressregisters. The start
address refers to the word offset in the display buffer where the beginning of theimageis
displayed from. At color depths other than 16 bpp, another register is required for smooth
movement. The pixel pan registers (REG[048h] for LCD, REG[068h] for CRT/TV) allow
panning in smaller increments than changing the start address alone.

Internally, the S1D13806 latches different signals at different times. Due to thisinternal
sequence, the start address and pixel pan registers should be accessed in a specific order
during panning and scrolling operations, in order to provide the smoothest scrolling. Setting
the registersin the wrong sequence, or at the wrong time, resultsin a“tearing” or jitter
effect on the display.

The start addressis latched at the beginning of each frame, so the start address can be set
within the vertical non-display period (VNDP). The pixel pan register values are latched at
the beginning of each display line and must be set during the vertical non-display period.
The correct sequence for programing these registersis:

1. Wait for the beginning of the vertical non-display period - For the LCD, REG[03Ah]
bit 7 will return a1 during VNDP; for the CRT/TV, REG[058h] bit 7 will return a 1
during VNDP. Wait for the transition of the appropriate bit to go from 0 to 1. Thisen-
sures the register updates are carried out at the beginning of VNDP.

2. Update the start address registers - For the LCD, REG[042h], REG[043h],
REG[044h]; for the CRT/TV, REG[062h], REG[063h], REG[064h].

3. Updatethe pixe panning register - For the LCD, REG[048h] bits 1-0; for the CRT/TV
REG[068h] bits 1-0.

Sample code for panning and scrolling is available in the file hal _virt.c which isincluded
in the HAL source code available on the internet at www.erd.epson.com.

S1D13806
X28B-G-003-04

Programming Notes and Examples
Issue Date: 01/02/26

Epson Research and Development Page 31
Vancouver Design Center

5.2.1 Registers

REG[042h] LCD Display Start Address Register 0

LCD Display | LCD Display | LCD Display | LCD Display | LCD Display | LCD Display | LCD Display | LCD Display
Start Address | Start Address | Start Address | Start Address | Start Address | Start Address | Start Address | Start Address
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

REG[043h] LCD Display Start Address Register 1

LCD Display | LCD Display | LCD Display | LCD Display | LCD Display | LCD Display | LCD Display | LCD Display
Start Address | Start Address | Start Address | Start Address | Start Address | Start Address | Start Address | Start Address
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

REG[044h] LCD Display Start Address Register 2

LCD Display | LCD Display | LCD Display | LCD Display
n/a n/a n/a n/a Start Address | Start Address | Start Address | Start Address
Bit 19 Bit 18 Bit 17 Bit 16

REG[062h] CRT/TV Display Start Address Register 0

CRT/TV CRT/TV CRT/TV CRT/TV CRT/TV CRT/TV CRT/TV CRT/TV
Display Start | Display Start | Display Start | Display Start | Display Start | Display Start | Display Start | Display Start
Address Address Address Address Address Address Address Address
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O

REG[063h] CRT/TV Display Start Address Register 1

CRT/TV CRT/TV CRT/TV CRT/TV CRT/TV CRT/TV CRT/TV CRT/TV
Display Start | Display Start | Display Start | Display Start | Display Start | Display Start | Display Start | Display Start
Address Address Address Address Address Address Address Address
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit9 Bit 8

REG[064h] CRT/TV Display Start Address Register 2

CRT/TV CRT/TV CRT/TV CRT/TV
Display Start | Display Start | Display Start | Display Start
na na na na Address Address Address Address
Bit 19 Bit 18 Bit 17 Bit 16

The Display Start Address registers form the word address to the display buffer where the
LCD or CRT/TV starts displaying from. An address of 0 pointsto the beginning of the
display buffer. Changing the start address registers by one pans from 1 to 4 pixels
depending on the current color depth. The following table lists the maximum number of
pixels affected by a change of one to these registers.

Table 5-1: Number of Pixels Panned When Start Address Changed By 1

Color Depth (bpp) | Pixels per Word Number of Pixels Panned
4 4 4
8 2 2
16 1 1
Programming Notes and Examples S1D13806

Issue Date: 01/02/26 X28B-G-003-04

Page 32

Epson Research and Development
Vancouver Design Center

REG[048h] LCD Pixel Panning Register

LCD Pixel LCD Pixel
n/a n/a n/a n/a Reserved Reserved Panning Bit 1 | Panning Bit 0
REG[068h] CRT/TV Pixel Panning Register
CRT/TV Pixel | CRT/TV Pixel
n/a n/a n/a n/a Reserved Reserved Panning Bit 1 | Panning Bit 0

The pixel panning register offersfiner control over panning than is available using the start
addressregisters. Using the pixel panning register, it is possibleto pan the displayed image
one pixel at atime. The number of bitsrequired to pan asingle pixel at atime, change with
the color depth. The following table shows the bits of the pixel pan register which are used
for each color depth.

Table 5-2: Active Pixel Pan Bits

Color Depth (bpp) | Pixel Pan bits used
4 bits [1:0]
8 bit 0
16 none

Note
The pixel panning registers are not required for color depths of 16 bpp.

The pixel panning registers must be updated in conjunction with the start address registers.
The pixel panning registers can be thought of as the least significant bit(s) of the start
addressregisters.

When panning to the right on an LCD set for a color depth of 4 bpp, the registerswould be

updated as follows.
1. Panright by 1 pixel - increment the pixel panning register by 1: REG[048h] = 01b.
Pan right by 1 pixel - increment the pixel panning register by 1: REG[048h] = 10b.

2
3. Panright by 1 pixel - increment the pixel panning register by 1: REG[048h] = 11b.
4

Pan right by 1 pixel - reset the pixel panning register to 0: REG[048h] = 00b.
- increment the start address register by 1. (REG[042h],
REG[043h], REG[044h]) + 1.
Note

The above example assumes the pixel panning register isinitially set at 0.

S1D13806

X28B-G-003-04

Programming Notes and Examples
Issue Date: 01/02/26

Epson Research and Development Page 33

Vancouver Design Center

5.2.2 Examples

When panning to the left on an LCD set for a color depth of 4 bpp, the registers would be
updated as follows.

1. Panleftby 1 pixel - decrement the pixel panning register by 1: REG[048h] = 11b.
- decrement the start address register by 1: (REG[042h],
REG[043h], REG[044h]) - 1.

2. Panleftby 1 pixel - decrement the pixel panning register by 1: REG[048h] = 10b.
3. Panleftby 1 pixel - decrement the pixel panning register by 1: REG[048h] = 01b.
4. Panleftby 1 pixel - decrement the pixel panning register by 1: REG[048h] = 00b.

Note
The above example assumes the pixel panning register isinitialy set at 0.

Thefollowing examples assume the display system has been configured to view a800x600
pixel image in a 640x480 viewport. Refer to Section 2, “Initialization” on page 12 and
Section 5.1, “Virtual Display” on page 26 for assistance with these settings.

Example 3: Panning - Right and Left

To pan to theright, increment the value in the pixel panning register (REG[048h] for LCD,
REG[068h] for CRT/TV). When the pixel pan value reaches the maximum value for the
current color depth (i.e. 11b for 4 bpp, 1b for 8 bpp) then set the pixel pan valueto zero and
increment the start address value. To pan to the left (assuming the pixel panning register is
zero), decrement the value in the pixel panning register and decrement the start address
register. When the pixel pan value reaches zero then decrement both the pixel panning
register and start address register again. If the pixel panning register contains a value other
than zero, decrement the value in the pixel panning register only and when the pixel pan
value reaches zero, decrement both the pixel panning register and start address register.

Note
Panning operations are easier to follow if avariable (e.g. PanValue) isused to track both
the pixel panning and start address registers. The least significant bits of PanVa ue will
represent the pixel panning register value and the more significant bits are the start ad-
dress register value.

Programming Notes and Examples S1D13806

Issue Date: 01/02/26

X28B-G-003-04

Page 34

Epson Research and Development
Vancouver Design Center

The following example pans to the right by one pixel when the color depthis 4 bpp.

1. Increment PanValue.

PanValue =PanVaue+ 1

2. Mask off the values from PanValue for the pixel panning and start address register
portions. In this case, 4 bpp, the lower two bits are the pixel panning value and the
upper bits are the start address.

PixelPan =PanVaue AND 3
StartAddress = PanValue SHR 2 (remove Pixel Pan bits)

3. Write the pixel panning and start address register values using the procedure outlined
in Section 5.2.1, “Registers’ on page 31.

Example 4: Scrolling - Up and Down

To scroll down, increase the value in the Display Start Address Registers (REG[042h],
REG[043h], REG[044h] for LCD, REG[062h], REG[063h], REG[064h] for CRT/TV) by
the number of wordsin onevirtual scan line. To scroll up, decrease thevaluein the Display
Start Address Registers by the number of words in one virtual scan line.

Thefollowing example scrolls down oneline for a 16 color (4 bpp) 800x600 virtual image
using a 640x480 single panel LCD.

1. Determine the number of wordsin each line of the virtual image. For a color depth of
4 bpp each byte contains two pixels so each word contains 4 pixels.

OffsetWords = PixelsPerVirtualLine + PixelsPerWord
=800+4
=200
=C8h

2. Increment the display start address by the number of words per virtual line.

StartAddress = StartAddress + OffsetWords
= StartAddress + C8h

3. Separate the display start address value into three bytes. For the LCD, write the LSB
to REG[042h] and the MSB to REG[044h]. For the CRT/TV, writethe LSB to
REG[062h] and the M SB to REG[064h].

For the LCD, REG[044h] is set to 00h, REG[043h] is set to 00h, and REG[042h] is set
to C8h.

For the CRT/TV, REG[064h] is set to 00h, REG[063h] is set to 00h, and REG[062h]
is set to C8h.

Note
The above example assumes the display start address was initially 0 (the beginning of
the display buffer).

S1D13806
X28B-G-003-04

Programming Notes and Examples
Issue Date: 01/02/26

Epson Research and Development Page 35

Vancouver Design Center

6 Power Save Mode

6.1 Overview

6.2 Registers

The S1D13806 has been designed for very low-power applications. During normal
operation, the internal clocks are dynamically disabled when not required. The S1D13806
design also includes a Power Save Modeto further save power. When Power Save Modeis
initiated, LCD power sequencing is required to ensure the LCD bias power supply is
disabled properly. For further information on LCD power sequencing, see Section 7, “LCD
Power Sequencing” on page 38.

For Power Save Mode AC Timing, seethe S1D13806 Hardware Functional Specification,
document number X28B-A-001-xx.

The S1D 13806 supports a software initiated Power Save Mode. Enabling/disabling Power
Save Modeis controlled using the Power Save Mode Enable bit (REG[1FO0h] bit 0).

While Power Save Mode is enabled the following conditions apply.
 Display(s) areinactive.

» Registers are accessible.

» Memory isin-accessible.

* LUT isaccessible.

MediaPlug registers are not accessible.

6.2.1 Enabling Power Save Mode

REG[1FOh] Power Save Configuration Register

Power Save
n/a n/a n/a Reserved n/a n/a n/a Mode Enable
The Power Save Mode Enable hit initiates Power Save M ode when set to 1. Setting the bit
back to O returns the S1D 13806 back to normal mode.
Note
Bit 4 isareserved bit and must be programmed to 1.
Note
Enabling/disabling Power Save M ode requires proper LCD Power Sequencing. See Sec-
tion 7, “LCD Power Sequencing” on page 38.
Programming Notes and Examples S1D13806

Issue Date: 01/02/26

X28B-G-003-04

Page 36

Epson Research and Development
Vancouver Design Center

6.2.2 Power Save Status Bits

REG[1F1h] Power Save Status Register

n/a

n/a

n/a

n/a

n/a

n/a

LCD Power
Save Status

Memory
Controller
Power Save
Status

The LCD Power Save Status bit is a read-only status bit which indicates the power save
state of the LCD panel. When this bit returns a 1, the panel is powered-off. When this bit
returns a0, the LCD panel is powered up or in transition of powering up or down. This bit

will return a 1 after achip reset.

Note

The LCD pixel clock source may be disabled when this bit returns a 1.

REG[1F1h] Power Save Status Register

n/a

n/a

n/a

n/a

n/a

n/a

LCD Power
Save Status

Memory
Controller
Power Save
Status

The Memory Controller Power Save Status bit isaread-only status bit which indicates the
power save state of the S1D13806 SDRAM interface. When this bit returnsa 1, the
SDRAM interface is powered down (the SDRAM isin self-refresh mode). When this bit
returns a0, the SDRAM interface isactive. Thisbit will return a0 after achip reset.

Note

The memory clock source may be disabled when this bit returnsa 1.

S1D13806
X28B-G-003-04

Programming Notes and Examples

Issue Date: 01/02/26

Epson Research and Development Page 37
Vancouver Design Center

6.3 Enabling Power Save Mode

Power Save Mode must be enabled using the following steps.
1. Disablethe LCD power using GPIO11.

Note
The S5U13806B00C uses GPI0O11 to control the LCD bias power supplies. Y our sys-
tem design may vary.

2. Wait for the LCD bias power supply to discharge as well asthe delay time specified in
the LCD panel specification.

3. Enable Power Save Mode - set REG[1FOh] bit O to 1.

4. Atthistime, the LCD pixel clock source may be disabled (Optional). Note the LUT
must not be accessed if the pixel clock is not active.

6.4 Disabling Power Save Mode

Power Save Mode must be disabled using the following steps.

1. Disable Power Save Mode - set REG[1F0h] hit 0 to O.

2. Enablethe LCD signals - Set Display Mode Select bit 0 (REG[1FCh] bit 0) to 1.
3. Wait the required delay time as specified in the LCD panel specification.

4. Enable GPIO11 to activate the LCD bias power.

Note
The S55U13806B00C uses GPIO11 to control the LCD bias power supplies. Y our sys-
tem design may vary.

Programming Notes and Examples S1D13806
Issue Date: 01/02/26 X28B-G-003-04

Page 38 Epson Research and Development
Vancouver Design Center

7 LCD Power Sequencing

The S1D13806 requires LCD power sequencing (the process of powering-on and
powering-off the LCD panel). LCD power sequencing allows the LCD bias voltage to
discharge prior to shutting down the L CD signal s, preventing long term damageto the panel
and avoiding unsightly “lines’ at power-on/power-off.

Proper LCD power sequencing for power-off requiresadelay fromthetimethe LCD power
is disabled to the time the LCD signals are shut down. Power-on requiresthe LCD signals
to be active prior to applying power to the LCD. Thistime interval depends on the LCD
bias power supply design. For example, the LCD bias power supply on the S5U13806
Evaluation board requires 0.5 seconds to fully discharge. Other power supply designs may
vary.

This section assumes the LCD bias power is controlled through GPIO11. The S1D13806
GPIO pins are multi-use pins and may not be availablein all system designs. For further
information on the availability of GPIO pins, see the S1D13806 Hardware Functional
Soecification, document number X 28B-A-001-xx.

Note
REG[1F0h] bit 4 must be set to 1 for proper LCD power sequencing.

S1D13806 Programming Notes and Examples
X28B-G-003-04 Issue Date: 01/02/26

Epson Research and Development Page 39
Vancouver Design Center

7.1 Enabling the LCD Panel

TheHAL function sel cdDisplayEnable(TRUE) can be used to enablethe LCD panel. The
function enables the LCD panel using the following steps.

1. Enablethe LCD signals- Set Display Mode Select bit 0 (REG[1FCh] bit 0) to 1.

2. Wait the required delay time as specified in the LCD panel specification (must be set
using 1386CFG, document number X 28B-B-001-xx).

3. Enable GPIO11 to activate the LCD bias power.

Note
sel cdDisplayEnableisincluded in the C source file hal_misc.c available on the internet
at www.erd.epson.com.

7.2 Disabling the LCD Panel

The HAL function sel cdDisplayEnable(FAL SE) can be used to disable the LCD panel.
function disables the LCD panel using the following steps.

1. Disablethe LCD power using GPIO11.

2. Wait for the LCD bias power supply to discharge (based on the delay time as specified
in the LCD panel specification).

3. Disablethe LCD signals- Set Display Mode Select bit 0 (REG[1FCH] bit 0) to 0.

4. Atthistime, the LCD pixel clock source may be disabled (Optional). Note the LUT
must not be accessed if the pixel clock is not active.

Note
sel cdDisplayEnableisincluded in the C source filehal_misc.c available on the internet
at www.erd.epson.com.

Programming Notes and Examples S1D13806
Issue Date: 01/02/26 X28B-G-003-04

Page 40 Epson Research and Development
Vancouver Design Center

8 Hardware Cursor/Ink Layer

8.1 Introduction

The S1D13806 supports either a Hardware Cursor or an Ink Layer for the LCD, and either
aHardware Cursor or an Ink Layer for the CRT/TV. The LCD and CRT/TV are supported
independently, so it is possible to select combinations such as a Hardware Cursor on the
LCD and an Ink Layer on the CRT/TV.

A Hardware Cursor improves video throughput in graphical operating systems by off-
loading much of the work typically assigned to software. For example, consider the actions
which must be performed when the user moves the mouse. On a system without hardware
support, the operating system must restore the area under the current cursor position, save
the area under the new location, and finally draw the cursor shape. Contrast that with the
hardware assisted system where the operating system must simply update the cursor X and
cursor Y position registers.

AnlInk Layer isdesigned to support stylus or peninput. Without an ink layer, the operating
system must save the area of the display buffer (possibly all) where pen input isto occur.

After the system recognizes the characters entered, the display would have to be restored

and the characters redrawn in a system font. When an Ink Layer is present, the stylus path
isdrawninthelnk Layer whereit overlaysthe displayed image. After character recognition
finishesthe display is updated with the new characters and the ink layer is simply cleared.
Saving and restoring the display datais not required providing faster throughput.

The S1D13806 Hardware Cursor/Ink Layer supports a2 bpp (four color) overlay image.
Two of the available colors are transparent and invert. The remaining two colors are user
definable.

The Hardware Cursor uses many of the same registers as the Ink Layer. Additionaly, the
cursor has positional registers for movement. The cursor resolution is 64x64 at a color
depth of 2 bpp. The Ink Layer resolution is the width of the display by the height of the
display at acolor depth of 2 bpp. Both the Hardware Cursor and the Ink Layer use the same
pixel values to select colors. The Hardware Cursor requires 1024 bytes of display buffer
and the Ink Layer requires (display width x display height + 4) bytes of display buffer.

S1D13806 Programming Notes and Examples
X28B-G-003-04 Issue Date: 01/02/26

Epson Research and Development Page 41
Vancouver Design Center

8.2 Registers

REG[070h] LCD Ink/Cursor Control Register

LCD LCD
n/a n/a n/a n/a n/a n/a Ink/Cursor Ink/Cursor
Mode Bit 1 Mode Bit 0

REG[080h] CRT/TV Ink/Cursor Control Register

CRT/TV CRT/TV
n/a n/a n/a n/a n/a n/a Ink/Cursor Ink/Cursor
Mode Bit 1 Mode Bit 0

The Ink/Cursor mode bits determine which of the Hardware Cursor or Ink Layer is active
as shown in following table.

Table 8-1: Ink/Cursor Mode

Ink/Cursor Control Operating Mode
bit 1 bit 0
0 0 Inactive
0 1 Cursor
1 0 Ink
1 1 Reserved

Note
When cursor mode is selected the cursor image is always 64x64 pixels. Selecting an ink
layer will result in an areawhich completely coversthe display.

REG[071h] LCD Ink/Cursor Start Address Register

LCD LCD LCD LCD LCD LCD LCD LCD
Ink/Cursor Ink/Cursor Ink/Cursor Ink/Cursor Ink/Cursor Ink/Cursor Ink/Cursor Ink/Cursor
Start Address | Start Address | Start Address | Start Address | Start Address | Start Address | Start Address | Start Address
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

REG[081h] CRT/TV Ink/Cursor Start Address Register

CRT/TV CRT/TV CRT/TV CRT/TV CRT/TV CRT/TV CRT/TV CRT/TV
Ink/Cursor Ink/Cursor Ink/Cursor Ink/Cursor Ink/Cursor Ink/Cursor Ink/Cursor Ink/Cursor
Start Address | Start Address | Start Address | Start Address | Start Address | Start Address | Start Address | Start Address
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

REG[071h] and REG[081h] determine the display buffer location of the Hardware
Cursor/Ink Layer for the LCD and CRT/TV respectively. The Ink/Cursor Start Address
register does not contain an actual address, but avalue based on the following table.

Table 8-2: Cursor/Ink Start Address Encoding

Ink/Cursor Start Address Bits [7:0] Start Address (Bytes)
0 1280K - 1024
01h - AOh 1280K - (n X 8192)
Alh - FFh Invalid
Programming Notes and Examples S1D13806

Issue Date: 01/02/26 X28B-G-003-04

Page 42

Epson Research and Development
Vancouver Design Center

REG[072h] LCD Cursor X Position Register 0
LCD Cursor X | LCD Cursor X | LCD Cursor X | LCD Cursor X | LCD Cursor X | LCD Cursor X | LCD Cursor X | LCD Cursor X
Position Position Position Position Position Position Position Position
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
REG[073h] LCD Cursor X Position Register 1
LCD Cursor X LCD Cgrsor X | LCD Cgrsor X
Sian n/a n/a n/a n/a n/a Position Position
g Bit 9 Bit 8
REG[082h] CRT/TV Cursor X Position Register 0
CRT/TV CRT/TV CRT/TV CRT/TV CRT/TV CRT/TV CRT/TV CRT/TV
Cursor X Cursor X Cursor X Cursor X Cursor X Cursor X Cursor X Cursor X
Position Bit 7 | Position Bit 6 | Position Bit 5 | Position Bit 4 | Position Bit 3 | Position Bit 2 | Position Bit 1 | Position Bit O
REG[083h] CRT/TV Cursor X Position Register 1
CRT/TV CRT/TV CRT/TV
Cursor X Sian n/a n/a n/a n/a n/a Cursor X Cursor X
9 Position Bit 9 | Position Bit 8

REG[072h], REG[073h] and REG[082h], REG[083h] control the horizontal position of the
Hardware Cursor for the LCD and CRT/TV respectively. The value in these registers

specify the location of theleft edge of the cursor. When ink modeis selected these registers
must be set to zero.

The Cursor X Position supports values of the range -63 to 1023. Negative values allow for
the Cursor to be clipped (partialy off the screen). The following procedure sets the Cursor
X Position.

1. Write the absolute (non-negative) value of the position in bits 9-0.

2.

If the position is negative, writea 1l inthe Cursor X Sign bit; otherwise writea0 to the

sign hit.

Note
The cursor position is not updated until the Cursor Y Position Register 1 iswritten
(REG[075h] or REG[085h]). When updating the cursor position, always update both the
XandY registers; X firstand Y second.

S1D13806
X28B-G-003-04

Programming Notes and Examples
Issue Date: 01/02/26

Epson Research and Development
Vancouver Design Center

Page 43

REG[074h] LCD Cursor Y Position Register 0
LCD CursorY |LCDCursorY |LCD CursorY |LCDCursorY |LCDCursorY | LCD CursorY | LCD CursorY | LCD CursorY
Position Position Position Position Position Position Position Position
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
REG[075h] LCD Cursor Y Position Register 1
LCD Cursor Y LCD Cgrsor Y | LCD Cgrsor Y
Sian n/a n/a n/a n/a n/a Position Position
9 Bit 9 Bit 8
REG[084h] CRT/TV Cursor Y Position Register 0
CRT/TV CRT/TV CRT/TV CRT/TV CRT/TV CRT/TV CRT/TV CRT/TV
Cursor Y Cursor Y Cursor Y Cursor Y Cursor Y Cursor Y Cursor Y Cursor Y
Position Bit 7 | Position Bit 6 | Position Bit 5 | Position Bit 4 | Position Bit 3 | Position Bit 2 | Position Bit 1 | Position Bit 0
REG[085h] CRT/TV Cursor Y Paosition Register 1
CRT/TV CRT/TV CRT/TV
Cursor Y Sian n/a n/a n/a n/a n/a Cursor Y Cursor Y
9 Position Bit 9 | Position Bit 8

REG[074h], REG[075h] and REG[084h], REG[085h] control the vertical position of the
Hardware Cursor for the LCD and CRT/TV respectively. The value in these registers
specify thelocation of the top edge of the cursor. When ink modeis sel ected these registers
must be set to zero.

The Cursor Y Position supports values of the range -63 to 1023. Negative values allow for
the Cursor to be clipped (partially off the screen). The following procedure sets the Cursor
X Position.

1. Writethe absolute (non-negative) value of the position in bits 9-0.

2.

If the position is negative, writealin the Cursor Y Sign bit; otherwise writea0 to the

sign hit.

Note
The cursor position is not updated until the Cursor Y Position Register 1 iswritten

(REG[075h] or REG[085h]). When updating the cursor position, always update both the
XandY registers; X first and Y second.

Programming Notes and Examples
Issue Date: 01/02/26

S1D13806
X28B-G-003-04

Page 44

Epson Research and Development

Vancouver Design Center

REG[076h] LCD Ink/Cursor Blue Color 0 Register
LCD LCD LCD LCD LCD
n/a n/a n/a Ink/Cursor Ink/Cursor Ink/Cursor Ink/Cursor Ink/Cursor
Blue Color 0 | Blue Color 0 | Blue Color O | Blue Color 0 | Blue Color O
Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
REG[077h] LCD Ink/Cursor Green Color 0 Register
LCD LCD LCD LCD LCD LCD
n/a n/a Ink/Cursor Ink/Cursor Ink/Cursor Ink/Cursor Ink/Cursor Ink/Cursor
Green Color 0 | Green Color O | Green Color 0 | Green Color 0 | Green Color 0 | Green Color 0
Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
REG[078h] LCD Ink/Cursor Red Color 0 Register
LCD LCD LCD LCD LCD
n/a n/a n/a Ink/Cursor Ink/Cursor Ink/Cursor Ink/Cursor Ink/Cursor
Red Color 0 Red Color 0 Red Color 0 Red Color 0 Red Color 0
Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

These registers form the 16 bpp (5-6-5) RGB values of user-defined color O for the LCD
Ink Layer/Hardware Cursor.

REG[07Ah] LCD Ink/Cursor Blue Color 1 Register
LCD LCD LCD LCD LCD
n/a n/a n/a Ink/Cursor Ink/Cursor Ink/Cursor Ink/Cursor Ink/Cursor
Blue Color 1 | Blue Color 1 | Blue Color 1 | Blue Color 1 | Blue Color 1
Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
REG[07Bh] LCD Ink/Cursor Green Color 1 Register
LCD LCD LCD LCD LCD LCD
n/a n/a Ink/Cursor Ink/Cursor Ink/Cursor Ink/Cursor Ink/Cursor Ink/Cursor
Green Color 1 | Green Color 1 | Green Color 1 | Green Color 1 | Green Color 1 | Green Color 1
Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
REG[07Ch] LCD Ink/Cursor Red Color 1 Register
LCD LCD LCD LCD LCD
n/a n/a n/a Ink/Cursor Ink/Cursor Ink/Cursor Ink/Cursor Ink/Cursor
Red Color 1 Red Color 1 Red Color 1 Red Color 1 Red Color 1
Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
These registers form the 16 bpp (5-6-5) RGB values of user-defined color 1 for the LCD
Ink Layer/Hardware Cursor.
S1D13806

X28B-G-003-04

Programming Notes and Examples

Issue Date: 01/02/26

Epson Research and Development
Vancouver Design Center

Page 45

REG[086h] CRT/TV Ink/Cursor Blue Color 0 Register
CRT/TV CRT/TV CRT/TV CRT/TV CRT/TV
n/a n/a n/a Ink/Cursor Ink/Cursor Ink/Cursor Ink/Cursor Ink/Cursor
Blue Color 0 | Blue Color 0 | Blue Color 0 | Blue Color 0 | Blue Color O
Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
REG[087h] CRT/TV Ink/Cursor Green Color 0 Register
CRT/TV CRT/TV CRT/TV CRT/TV CRT/TV CRT/TV
na n/a Ink/Cursor Ink/Cursor Ink/Cursor Ink/Cursor Ink/Cursor Ink/Cursor
Green Color 0 | Green Color O | Green Color 0 | Green Color 0 | Green Color 0 | Green Color 0
Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
REG[088h] CRT/TV Ink/Cursor Red Color 0 Register
CRT/TV CRT/TV CRT/TV CRT/TV CRT/TV
na n/a n/a Ink/Cursor Ink/Cursor Ink/Cursor Ink/Cursor Ink/Cursor
Red Color 0 Red Color 0 Red Color 0 Red Color 0 Red Color 0
Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Theseregistersform the 16 bpp (5-6-5) RGB values of user-defined color O for the CRT/TV

Ink Layer/Hardware Cursor.
REG[08Ah] CRT/TV Ink/Cursor Blue Color 1 Register
CRT/TV CRT/TV CRT/TV CRT/TV CRT/TV
n/a n/a n/a Ink/Cursor Ink/Cursor Ink/Cursor Ink/Cursor Ink/Cursor
Blue Color 1 | Blue Color1 | Blue Color1 | Blue Color 1 | Blue Color 1
Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
REG[08Bh] CRT/TV Ink/Cursor Green Color 1 Register
CRT/TV CRT/TV CRT/TV CRT/TV CRT/TV CRT/TV
n/a n/a Ink/Cursor Ink/Cursor Ink/Cursor Ink/Cursor Ink/Cursor Ink/Cursor
Green Color1 | Green Color 1 | Green Color 1 | Green Color 1 | Green Color 1 | Green Color 1
Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
REG[08Ch] CRT/TV Ink/Cursor Red Color 1 Register
CRT/TV CRT/TV CRT/TV CRT/TV CRT/TV
na n/a n/a Ink/Cursor Ink/Cursor Ink/Cursor Ink/Cursor Ink/Cursor
Red Color 1 Red Color 1 Red Color 1 Red Color 1 Red Color 1
Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Theseregistersform the 16 bpp (5-6-5) RGB values of user-defined color 1 for the CRT/TV
Ink Layer/Hardware Cursor.

Programming Notes and Examples S1D13806
X28B-G-003-04

Issue Date: 01/02/26

Page 46

Epson Research and Development
Vancouver Design Center

REG[07Eh] LCD Ink/Cursor FIFO High Threshold Register
LCD LCD LCD LCD
Ink/Cursor Ink/Cursor Ink/Cursor Ink/Cursor
n/a n/a n/a n/a FIFO High FIFO High FIFO High FIFO High
Threshold Threshold Threshold Threshold
Bit 3 Bit 2 Bit 1 Bit 0
REG[08Eh] CRT/TV Ink/Cursor FIFO High Threshold Register
CRT/TV CRT/TV CRT/TV CRT/TV
Ink/Cursor Ink/Cursor Ink/Cursor Ink/Cursor
n/a n/a n/a n/a FIFO High FIFO High FIFO High FIFO High
Threshold Threshold Threshold Threshold
Bit 3 Bit 2 Bit 1 Bit O
These registers control the Ink Layer/Hardware Cursor FIFO depth in order to sustain
uninterrupted display fetches.
REG[07Eh] determines the FIFO high threshold for the LCD Hardware Cursor/Ink Layer.
REG[08Eh] determines the FIFO high threshold for the CRT/TV Hardware Cursor/Ink
Layer. When this register is set to 00h, the threshold is automatically set in hardware. For
further information, see the 1386 Hardware Functional Specification, document number
X28B-A-001-xx.
S1D13806 Programming Notes and Examples

X28B-G-003-04 Issue Date: 01/02/26

Epson Research and Development Page 47

Vancouver Design Center

8.3 Initialization

This section describes the process of initializing the S1D13806 for a Hardware Cursor or
Ink Layer.

8.3.1 Memory Considerations

Both the Hardware Cursor and Ink Layer are positioned in the display buffer by the LCD
Ink/Cursor Start Address register (REG[071h]) and CRT/TV Ink/Cursor Start Address
register (REG[081h]). The Hardware Cursor and Ink Layer should be allocated the highest
possible available memory address. If a Dual Panel Buffer is required, or if another
Hardware Cursor or Ink Layer is required, additional memory must be allocated and
programmed in the appropriate Ink/Cursor Start Address register.

The size of the Dual Panel Buffer is determined by the following.
Dual Panel Buffer Size (in bytes) = (Panel Width x Panel Height) x factor + 16

where:
factor = 4 for color panel
= 1 for monochrome panel

Note
The dual panel buffer always starts at (1280K - Dual Panel Buffer Size).

The size of a hardware cursor is always 1024 bytes.
The size of the ink layer in bytesis (display width x display height + 4).

Programming Notes and Examples S1D13806

Issue Date: 01/02/26

X28B-G-003-04

Page 48

Epson Research and Development

Vancouver Design Center

8.3.2 Examples

Example 5: Initializing the Hardware Cursor

Thefollowing example placesan LCD Hardware Cursor at the end of a1.25M byte display
buffer. SwivelView™ modes require software rotation of the Ink Layer. This can only
occur when aDual Panel Buffer isnot required. Color O is set to black, and color 1isset to

white.

Note

The Hardware Cursor always requires 1024 (400h) bytes.

Table 8-3: LCD Hardware Cursor Initialization Sequence

Register Value Notes
[070h] 0000 0001 Enable LCD hardware cursor
[071h] 0000 0000 Set cursor start address to Memory Size - 1024
{8;3:} 8888 8888 Set LCD Cursor X Paosition to 0
{8;3:} 8888 8888 Set LCD Cursor Y Paosition to 0
[076h] 0000 0000
[077h] 0000 0000 Set Color 0 to black
[078h] 0000 0000
[07Ah] 0001 1111
[07Bh] 0011 1111 Set Color 1 to white
[07Ch] 0001 1111
[07ER] 0000 0000 Set FIFO High Threshold to default

S1D13806
X28B-G-003-04

Programming Notes and Examples

Issue Date: 01/02/26

Epson Research and Development Page 49
Vancouver Design Center

Example 6: Initializing the Ink Layer
The following example places an Ink Layer at the end of a 1.25M byte display buffer.
SwivelView™ modes require software rotation of the Ink Layer. Color Oisset to black, and
color 1is set to white.
For a system with a 640x480 LCD display, the ink layer sizeis calculated as follows.
InkLayerSize = (PanelWidth x PanelHeight) +~ 4
= (640 x 480) + 4
= 76,800 bytes

The Ink Layer must be alocated in 8K byte blocks. The value of the LCD Ink/Cursor Start
Address register is determined from the following table and calculation.

Table 8-4: Ink Layer Sart Address Encoding

Ink/Cursor Start Address Bits [7:0] Start Address (Bytes)
0 1280K - 1024
01h - AOh 1280K - (n x 8192)
Alh - FFh Invalid
n = InkLayerSize + RequiredBlockSize
=76,800 +~ 8192
=9.375

Fractional values cannot be programmed, therefore round up to an address of 10 (OAh).
This reserves 10 x 8192 = 81,920 bytes for the Ink Layer from the end of display buffer.

Note

Always round up the Ink/Cursor Start Address when cal culating, otherwise insufficient
memory will be allocated for the Ink Layer.

Table 8-5: LCD Ink Layer Initialization Sequence

Register Value Notes
[070h] 0000 0010 Enable LCD ink layer
[071h] 0000 1010 Set cursor start address to 0Ah (Memory Size - (8192 x 10))
[076h] 0000 0000
[077h] 0000 0000 Set Color 0 to black
[078h] 0000 0000
[07AR] 0001 1111
[07Bh] 0011 1111 Set Color 1 to white
[07Ch] 0001 1111
[07ER] 0000 0000 Set FIFO High Threshold to default

Programming Notes and Examples S1D13806

Issue Date: 01/02/26 X28B-G-003-04

Page 50

Epson Research and Development
Vancouver Design Center

8.4 Writing Cursor/Ink Layer Images

This section describes how to write images to the Hardware Cursor and Ink Layer. The
Hardware Cursor isa64x64 image at a color depth of 2 bpp. The Ink Layer isthe samesize
asthe virtual display (width x height) at a color depth of 2 bpp. The Ink Layer may be
described as a non-moveable cursor with the same resolution as the display device.

8.4.1 Hardware Cursor/Ink Layer Data Format

The Hardware Cursor/Ink Layer image isfixed at a color depth of 2 bpp. The following
diagram shows the Hardware Cursor/Ink Layer data format for alittle endian system.

2 bpp: bit 7 bit 0 PoP1P,P3P,P5PgP;
HEEEEEE
Byte 0 Ao | Bo | A1 | By | A2 | B2 | Ag | B3
Byte 1 Ay | By | As | Bs | Ag | Bs | A7 | By
Pn = (An, Bp)
Panel Display
Host Address Hardware Cursor/Ink Layer Buffer
Figure 8-1: Hardware Cursor/Ink Layer Data Format
Theimage datafor pixel n, (A,,B,), selectsthe color for pixel n asfollows:
Table 8-6: Ink/Cursor Color Select
(An.Bp) Color Comments

Ink/Cursor Color 0 Register:

00 Color 0 For LCD, REG[076h], REG[077h], REG[078h].
For CRT/TV, REG[086h], REG[087h], REG[088h].
Ink/Cursor Color 1 Register:

01 Color 1 For LCD, REG[07Ah], REG[07Bh],REG[07Ch].
For CRT/TV, REG[08Ah], REG[08Bh], REG[08Ch].

10 Background Ink/Cursor is transparent — show background

11 Inverted Background Ink/Cursor is transparent — show inverted background

S1D13806 Programming Notes and Examples

X28B-G-003-04

Issue Date: 01/02/26

Epson Research and Development Page 51

Vancouver Design Center

8.4.2 Cursor Image

The following procedures demonstrate how to write an image to the Hardware Cursor
buffer.

L andscape M ode (no rotation)

1

2.

For the LCD cursor, calculate the start address based on the value in REG[071h].
For the CRT/TV cursor, calculate the start address based on the valuein REG[081h].
Refer to the REG[071h] and REG[081h] register descriptions for more information.

Write the cursor image to the display buffer. The image must be exactly 1024 bytes.

SwivelView M odes

6.

Save the current state of REG[1FCh] bit 6.
Set REG[1FCh] bit 6 to 0.

For the LCD cursor, calculate the start address based on the value in REG[071h].
For the CRT/TV cursor, calculate the start address based on the valuein REG[081h].
Refer to the REG[071h] and REG[081h] register descriptions for more information.

Perform a software rotate of the cursor image.

Write the rotated cursor image to the display buffer. The image must be exactly 1024
bytes.

Restore the original state of REG[1FCh] bit 6.

Note

It

is possible to use the same cursor image for both LCD and CRT/TV displays. Program

the LCD and CRT/TV Ink/Cursor Start Address registers (REG[071h] and REG[081h])
to the same location. This saves some display buffer which would otherwise be used by
asecond cursor image. Note this saves 8192 bytes of display buffer, not 1024 bytes,
because the start address movesin steps of 8192 bytes.

Programming Notes and Examples
Issue Date: 01/02/26

S1D13806
X28B-G-003-04

Page 52

Epson Research and Development
Vancouver Design Center

8.4.3 Ink Layer Image

The following procedures demonstrate how to write an image to the Ink Layer buffer.

L andscape Mode (no rotation)

1. FortheLCD, caculatethe start address based on the value in REG[071h].
For the CRT/TV, calculate the start address based on the value in REG[081h].
Refer to the REG[071h] and REG[081h] register descriptions for more information.

2. Writethe Ink Layer image to the display buffer. The image must be exactly (display
width x display height + 4) bytes.

SwivelView Modes
1. Savethe current state of REG[1FCh] bit 6.
2. Set REG[1FCh] bit 6to 0.

3. FortheLCD, calculate the start address based on the value in REG[071h].
For the CRT/TV, calculate the start address based on the value in REG[081h].
Refer to the REG[071h] and REG[081h] register descriptions for more information.

4. Perform a software rotate of the Ink Layer image.

5. Writetherotated Ink Layer image to the display buffer. The image must be exactly
(display width x display height + 4) bytes.

6. Restorethe original state of REG[1FCh] bit 6.

Note
It ispossible to use the same Ink Layer image for both LCD and CRT/TV displays. Pro-
gram the LCD and CRT/TV Ink/Cursor Start Address registers (REG[071h] and
REG[081h]) to the same location. This save some display buffer which would otherwise
be used by asecond Ink Layer.

S1D13806
X28B-G-003-04

Programming Notes and Examples
Issue Date: 01/02/26

Epson Research and Development Page 53

Vancouver Design Center

8.5 Cursor Movement

The following section discusses cursor movement in landscape, SwivelView 90°,
SwivelView 180°, and SwivelView 270° modes.

Itis possible to move the top left corner of the cursor to a negative position (-63, -63). This
allows the cursor to be clipped (only a portion is visible on-screen).

Cursor positions don't take effect until the most significant byte of the Y position register
iswritten. Therefore, the following register write order is recommended.

1

2
3.
4

Set X Position Register 0
Set X Position Register 1
Set Y Position Register 0

Set Y Position Register 1.

8.5.1 Move Cursor in Landscape Mode (no rotation)

In the following example, (X, y) represents the desired cursor position.

1
2.

Calculate abs(x), the absolute (non-negative) value of x.
Write the least significant byte of abs(x) to X Position Register O.

If X is negative, take the value of the most significant byte of abs(x) and logically OR
with 80h. Write the result to X Position Register 1.
If x ispositive, write the most significant byte of abs(x) to X Position Register 1.

Calculate abs(y), the absolute (non-negative) value of y.
Write the least significant byte of abs(y) to Y Position Register O.

If y isnegative, take the value of the most significant byte of abs(y) and logically OR
with 80h. Write the result to Y Position Register 1.

If y ispositive, take the value of the most significant byte of abs(y) and writeto Y Po-
sition Register 1.

Programming Notes and Examples

Issue Date: 01/02/26

S1D13806
X28B-G-003-04

Page 54

Epson Research and Development
Vancouver Design Center

8.5.2 Move Cursor in SwivelView 90° Rotation

In the following example, (X, y) represent the desired cursor position.

1
2.
3.

Calculate abs(x), the absolute (non-negative) value of x.
Write the least significant byte of abs(x) to Y Position Register 0.

If X isnegative, take the value of the most significant byte of abs(x) and logically OR
with 80h. Write theresult to Y Position Register 1.
If x is positive, write the most significant byte of abs(x) to Y Position Register 1.

Calculate avauefor y2,
wherey?2 = display width - y - 64.

Calculate abs(y2), the absolute (non-negative) value of y2.
Write the least significant byte of abs(y2) to X Position Register 0.

If y2is negative, take the value of the most significant byte of abs(y2) and logically
OR with 80h. Write the result to X Position Register 1.
If y2ispositive, write the most significant byte of abs(y2) to X Position Register 1.

8.5.3 Move Cursor in SwivelView 180° Rotation

In the following example, (X, y) represent the desired cursor position.

1

Calculate the value of x2,
where x2 = display width - x - 64

Calculate abs(x2), the absolute (non-negative) value of x2.
Write the least significant byte of abs(x2) to X Position Register0.

If X2 is negative, take the value of the most significant byte of abs(x2) and logically
OR with 80h. Write the result to X Position Register 1.
If X2 is positive, write the most significant byte of abs(x2) to X Position Register 1.

Calculate the value of y2,
wherey2 = display height - y - 64

Calculate abs(y2), the absolute (non-negative) value of y2.
Write the least significant byte of abs(y2) to Y Position Register 0.

If y2 is negative, take the value of the most significant byte of abs(y2) and logically
OR with 80h. Writetheresult to Y Position Register 1.
If y2ispositive, write the most significant byte of abs(y2) to Y Position Register 1.

S1D13806
X28B-G-003-04

Programming Notes and Examples
Issue Date: 01/02/26

Epson Research and Development Page 55
Vancouver Design Center

8.5.4 Move Cursor in SwivelView 270° Rotation

In the following example, (X, y) represent the desired cursor position.

1. Calculate thevalue of x2,
where x2 = display width - x - 64

2. Calculate abs(x2), the absolute (non-negative) value of x2.
3. Writethe least significant byte of abs(x2) to Y Position Register 0.

4. If x2isnegative, take the value of the most significant byte of abs(x2) and logically
OR with 80h. Writethe result to Y Position Register 1.
If X2 is positive, write the most significant byte of abs(x2) to Y Position Register 1.

5. Calculate abs(y), the absolute (non-negative) value of y.
6. Writethe least significant byte of abs(y) to X Position Register 0.

7. If yisnegative, take the value of the most significant byte of abs(y) and logically OR
with 80h. Write the result to X Position Register 1.
If y ispositive, write the most significant byte of abg(y) to X Position Register 1.

Programming Notes and Examples S1D13806
Issue Date: 01/02/26 X28B-G-003-04

Page 56 Epson Research and Development
Vancouver Design Center

9 SwivelView™

Most computer displays operatein landscape mode. In landscape mode the display iswider
thanit is high. For example, astandard display size of 640x480 is 640 pixels wide and 480
pixels wide.

SwivelView rotates the display image clockwisein ninety degreeincrements, possibly
resulting in adisplay that ishigher than it iswide. Rotating the image on a640x480 display
by 90 or 270 degreesyields a display that is now 480 pixels wide and 640 pixels high.

SwivelView also works with panels that are designed with a “portrait” orientation. In this
case, when SwivelView 0° is selected, the panel will bein a“portrait” orientation. A
selection of Swivel View 90° or SwivelView 270° rotates to alandscape orientation.

9.1 S1D13806 SwivelView

The S1D13806 provides hardware support for SwivelView in 8 and 16 bpp color depthson
LCD panels. SwivelView is not supported on CRT or TV displays.
Certain conditions must be considered when SwivelView is enabled.

» Thevirtua display offset (scan line) must be set to 1024 pixels (1024 bytes in 8 bpp,
2048 bytesin 16 bpp) when SwivelView Enable Bit Ois set to 1.

» Thedisplay start addressis calculated differently when SwivelView is enabled.

 Calculations that would result in panning in landscape mode, may result in scrolling
when SwivelView is enabled and vice-versa.

S1D13806 Programming Notes and Examples
X28B-G-003-04 Issue Date: 01/02/26

Epson Research and Development Page 57
Vancouver Design Center
9.2 Registers
REG[01FCh] Display Mode Register

SwivelView Display Mode | Display Mode | Display Mode
na Enable Bit 0 na na na Select Bit 2 Select Bit 1 Select Bit 0
REG[040h] LCD Display Mode Register
LCD Display n/a n/a SwivelView n/a Bit-Per-Pixel | Bit-Per-Pixel |Bit-Per-Pixel
Blank Enable Bit 1 Select Bit 2 Select Bit 1 Select Bit 0

The Swivel View modes are enabled using a combination of 2 enable bits - SwivelView
Enable Bit 0 (REG[1FCh]) and Swivel View Enable Bit 1 (REG[040h]). The combinations

of these bits provide the following rotations.

Table 9-1: SwivelView Enable Bits

SwivelView Enable

SwivelView Enable

Display Rotated

Bit 1 Bit 0 (degrees)

0 0 0

0 1 90

1 0 180

1 1 270
REG[046h] LCD Memory Address Offset Register 0
Bit 7 Bit 6 Bit 5 Bit4 Bit 3 Bit 2 Bit 1 Bit O
REG[047h] LCD Memory Address Offset Register 1
n/a n/a n/a n/a n/a Bit 10 Bit 9 Bit 8

The LCD Memory Address Offset Registers must be adjusted according to the desired

SwivelView rotation and color depth. Set theLCD Memory Address Offset Registersbased
on the values provided for each color depth in the following table. Panel Width (PW) isthe
horizontal panel sizein pixels(i.e. for a640x480 panel, PW is 640 regardless of the display
rotation).

Table 9-2: LCD Memory Address Offset Values

SwivelView Enable . Memory Address Offset Value
- : Display Rotated
Bit 1 Bit 0 16 bpp 8 bpp
0 0 0 degrees PW PW +2
0 1 90 degrees 1024 512
1 0 180 degrees PW PW =2
1 1 270 degrees 1024 512
Programming Notes and Examples S1D13806

Issue Date: 01/02/26

X28B-G-003-04

Page

58

Epson Research and Development
Vancouver Design Center

REG[042h] LCD Display Start Address Register 0

Bit 7

Bit 6

Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

REG[043h] L

CD Display Start Address Register 1

Bit 15

Bit 14

Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

REG[044h] L

CD Display Start Address Register 2

n/a

n/a

n/a n/a Bit 19 Bit 18 Bit 17 Bit 16

The LCD Display Start Address Registers must be adjusted according to the desired
SwivelView rotation and color depth. Set the LCD Display Start Address Registers based
on the values provided for each color depth in the following table. Panel Width (PW) isthe
horizontal panel size in pixels. Panel Height (PH) isthe vertical panel sizeinlines (i.e. for
a 640x480 panel, PW is 640 and PH is 480 regardless of display rotation). Stride is based
on the previously calculated memory offset in bytes (Stride = MemoryOffset x 2).

Table 9-3: LCD Display Start Address Values

SwivelView Enable . LCD Display Start Address Value
- - Display Rotated
Bit 1 Bit O 16 Bpp mode 8 Bpp mode
0 0 0 degrees 0 0
0 1 90 degrees (1024 - PW) (1024 - PW) + 2
1 0 180 degrees (Stride X PH - (Stride - 2 X PW)) ~ 2 - 1 | (Stride X PH - (Stride - PW)) +2-1
1 1 270 degrees (Stride X PH) +2-1 (Stride X PH) ~2-1

9.3 Limitations

Thefollowing limitations apply when Swivel View bit Oisset to 1 (rotation by 90° or 270°):
» Only 8/16 bpp modes can be rotated 90 or 270 degrees.

» Hardware Cursor and Ink Layer images are not rotated - software rotation must be used.
SwivelView must be turned off when the programmer is accessing the Hardware Cursor
or thelnk Layer. The BitBL T engine ignores the SwivelView bits also.

 Pixel panning works vertically.

* Itisnot possible to rotate an aready displayed image. The image must be redrawn.

Note
Drawing into the Hardware Cursor/Ink Layer with SwivelView enabled requires dis-
abling SwivelView, drawing in the Hardware Cursor/Ink Layer buffer, then re-enabling
SwivelView.

S1D13806

X28B-G-003-04

Programming Notes and Examples
Issue Date: 01/02/26

Epson Research and Development Page 59

Vancouver Design Center

9.4 Examples

Source code demonstrating various SwivelView rotationsis provided in thefile
1386swivel.c (part of the file 86sample.zip) available on the internet at
www.erd.epson.com.

Example 7: Rotate Image 90° for a 640x480 display at a color depth of 8 bpp.

Before enabling SwivelView, the display buffer should be cleared. This makes the
transition smoother as existing display images cannot be rotated by hardware - arepaint is
necessary.

1. Settheline offset to 1024 pixels. The Memory Offset register isthe offset in words.

Write 02h to REG[047h] and write 00h to REG[046h].

2. Setthe LCD Display Start Address. The Display Start Address registers form apoint-
er to aword, therefore the value to set the start.

Write COh (192 or (1024 - 480)+2) to REG[042h], REG[043h] and REG[044h]. That
iswrite COh to REG[042h], 00h to REG[043h] and 00h to REG[044h].

3. Enable SwivelView Bit 0 and clear SwivelView Bit 1. Set REG[1FCh] to 1 and
REG[040h] to 0.

4. Thedisplay isnow configured for SwivelView 90° mode. Offset zero into the display
buffer corresponds to the upper left corner of the display. The only difference seen by
the programmer is the display offset is now 1024 pixels regardless of the physical
dimensions of the display.

5. Draw the desired image.

Example 8: Rotate Image 180 degrees for a 640x480 display at a color depth of 16
bpp.

Assuming the existing image is unrotated, the display buffer does not have to be cleared.
Existing display images are simply be rotated by hardware. In this case arepaint is not

necessary.
1. The Memory Offset register does not need to be modified.

2. Setthe LCD Display Start Address. The Display Start Address registers form apoint-
er to aword, therefore the value to set the start. Calculate the value based on the fol -
lowing formula.

StartAddress = (ScanBytes x PanelHeight - (ScanBytes - 2 x PanelWidth)) + 2 - 1
= (1280 x 480 - (1280-2x 640)) + 2- 1
=(1280x480) +2-1
= 307199
= 4AFFFh

Programming Notes and Examples S1D13806

Issue Date: 01/02/26

X28B-G-003-04

Page 60

Epson Research and Development
Vancouver Design Center

Program the LCD Display Start Address Registers. REG[044h] is set to 04h,
REG[043h] is set to AFh, and REG[042h] is set to FFh.

3. Set SwivelView Bit 1 by setting bit 4 of REG[040h]

4. Thedisplay will now show the previous image rotated by 180 degrees. Offset zero
into display memory will correspond to the lower right corner of the display.

5. Draw any new desired image. The drawing software can be completely unaware of the
display being rotated.

9.5 Simultaneous Display Considerations

Although only the LCD panel image can berotated, it is possible to simultaneously display
an independent image on the CRT or TV display. In this case, the programmer should be
aware of the following:

» Asthe LCD display buffer must start at offset O when arotated display is required, the
CRT display buffer must be located after the LCD display buffer.

* When modifying the CRT display buffer, SwivelView Enable Bit 0 must be cleared and
then restored when finished. The following demonstrates this principle.

1. Save SwivelView Bit 0
Clear SwivelView Bit 0

Draw the CRT/TV image

A w0 DN

Restore the saved SwivelView Bit O.

S1D13806
X28B-G-003-04

Programming Notes and Examples
Issue Date: 01/02/26

Epson Research and Development Page 61

Vancouver Design Center

10 2D BitBLT Engine

10.1 Registers

Theterm BitBLT isan acronym for Bit Block Transfer. During aBitBLT operation datais
transferred from one memory location (source) to another memory location (destination).
With current graphical user interfaces (GUIs) this term generally refersto the transfer of
bitmap images to or from video memory (display buffer).

The resulting bitmap image may be derived from up to three items or operands:
* the source data.
e anoptional pattern.

« the current destination data.

The operands are combined using logical AND, OR, XOR and NOT operations. The
combining processis called a Raster Operation (ROP). The S1D13806 2D Accelerator
supports all possible 16 ROPs between source data and destination data. The destinationis
alwaysthe display buffer and the sourceis either datain the display buffer, apattern in the
display buffer, or data provided by the host CPU.

The 2D BitBLT Engine in the S1D13806 is designed to increase the speed of the most
common GUI operations by off-loading work from the CPU, thus reducing traffic on the
system bus and improving the efficiency of the display buffer interface. The 2D BitBLT
Engineis designed to work at color depths of 8 bpp and 16 bpp.

The BitBLT control registers on the S1D13806 are located at registers 100h through 119h.
The following is a description of al BitBLT registers.

REG[100h] BitBLT Control Register 0
BItBLT Active | BItBLT FIFO | BitBLT FIFO | BitBLT FIFO BitBLT BitBLT
Status Not Empty Half Full Full Status n/a n/a Destination | Source Linear
Status (RO) | Status (RO) (RO) Linear Select Select
The BitBLT Active Status bit has two data paths, one for write and one for read.
Write Data Path
When thishit isset to 1, the BitBL T as selected in the BitBL T Operation Register
(REG[103h]) is started.
Read Data Path
When thisbit isread, it returns the status of the BitBL T engine. When aread from this bit
returns 0, the BitBLT engineisidle and isready for the next operation. When aread from
thisbit returnsa 1, the BitBL T engineis busy.
Programming Notes and Examples S1D13806

Issue Date: 01/02/26

X28B-G-003-04

Page 62

Epson Research and Development

Vancouver Design Center

REG[100h] BitBLT Control Register 0

BitBLT Active BitBLT FIFO | BitBLT FIFO | BitBLT FIFO BitBLT BitBLT
Status Not Empty Half Full Full Status nla n/a Destination | Source Linear
Status (RO) | Status (RO) (RO) Linear Select Select

TheBitBLT FIFO Not Empty Status bit isaread-only status bit. When thisbit returns a0,
the BitBLT FIFO isempty. When thishit returnsal, the BitBL T FIFO contains at least one
data (or one word).

REG[100h] BitBLT Control Register 0
. . BitBLT FIFO | BitBLT FIFO | BitBLT FIFO BitBLT BitBLT
BitBLT Active o .
Status Not Empty Half Full Full Status n/a n/a Destination | Source Linear
Status (RO) | Status (RO) (RO) Linear Select Select

The BitBLT FIFO Half Full Status bit isaread-only status bit. When this bit returns a0,
the BitBLT FIFO isless than half full (contains 7 or less data). When this bit returnsa i,
the BitBLT FIFO is half full or greater than half full (contains 8 or more data).

REG[100h] BitBLT Control Register 0

BitBLT Active BitBLT FIFO | BitBLT FIFO | BitBLT FIFO BitBLT BitBLT
Status Not Empty Half Full Full Status nla n/a Destination | Source Linear
Status (RO) | Status (RO) (RO) Linear Select Select

The BitBLT FIFO Full Status bit is aread-only status bit. When this bit returnsa 0, the
BitBLT FIFO isnot full (containslessthan 16 data). When thisbit returnsa 1, the BitBLT
FIFO isfull (contains 16 data).

REG[100h] BitBLT Control Register 0

BitBLT Active BitBLT FIFO | BitBLT FIFO | BitBLT FIFO BitBLT BitBLT
Status Not Empty Half Full Full Status n/a nla Destination | Source Linear
Status (RO) | Status (RO) (RO) Linear Select Select

The BitBLT Destination Linear Select bit specifies the storage method of the destination
BitBLT. If thisbit = 0, the destination BitBL T is stored as arectangular region of memory.
If thisbit = 1, the destination BitBLT is stored as a contiguous linear block of memory.

REG[100h] BitBLT Control Register 0
BitBLT Active | BIBLT FIFO | BitBLT FIFO | BitBLT FIFO BitBLT BitBLT
Status Not Empty Half Full Full Status n/a n/a Destination | Source Linear
Status (RO) | Status (RO) (RO) Linear Select Select
TheBitBLT Source Linear Select bit specifies the storage method of the source BitBLT. If
this bit = 0, the source BitBL T is stored as a rectangular region of memory. If thisbit = 1,
the source BitBLT is stored as a contiguous linear block of memory.
S1D13806

X28B-G-003-04

Programming Notes and Examples

Issue Date: 01/02/26

Epson Research and Development Page 63
Vancouver Design Center

REG[101h] BitBLT Control Register 1

BitBLT Color

Reserved n/a n/a nfa Format Select

n/a n/a n/a

This bit is reserved and must be set to 0.

REG[101h] BitBLT Control Register 1

BitBLT Color

Reserved n/a n/a nfa Format Select

n/a n/a n/a

The BitBLT Color Format Select bit selects the color format that the BitBL T operation is
applied to. When thisbit = 0, 8 bpp (256 color) format is selected. When thisbit = 1, 16 bpp
(64K color) format is selected.

REG[102h] BitBLT ROP Code/Color Expansion Register

BitBLT ROP | BitBLT ROP | BitBLT ROP | BitBLT ROP
n/a n/a n/a n/a Code Code Code Code
Bit 3 Bit 2 Bit 1 Bit 0

TheBitBLT ROP Code/Color Expansion Register selectsthe Raster Operation (ROP) used
for the Write BitBLT, Move BitBL T, and Pattern fill. It isa so used to specify the start bit
position for BitBL Tswith color expansion. The following table summarizes the function-
ality of thisregister.

Table 10-1: BitBLT ROP Code/Color Expansion Function Selection

BitBLT ROP Code Boolean Function for Write Boolean Function for Start Bit Position for Color
Bits [3:0] BitBLT and Move BitBLT Pattern Fill Expansion
0000 0 (Blackness) 0 (Blackness) bit 0
0001 ~S.~Dor~(S+D) ~P.~Dor~(P + D) bit 1
0010 ~S.D ~P.D bit 2
0011 ~S ~P bit 3
0100 S.~D P.~D bit 4
0101 ~D ~D bit 5
0110 S~D P~D bit 6
0111 ~S+~Dor~(S.D) ~P +~Dor~(P.D) bit 7
1000 S.D P.D bit 0
1001 ~(S"D) ~(P D) bit 1
1010 D D bit 2
1011 ~S+D ~P+D bit 3
1100 S P bit 4
1101 S+-~D P+~D bit 5
1110 S+D P+D bit 6
1111 1 (Whiteness) 1 (Whiteness) bit 7
S = Source, D = Destination, P = Pattern
Operators: ~ = NOT, . = Logical AND, + = Logical OR, * = Logical XOR
Programming Notes and Examples S1D13806

Issue Date: 01/02/26

X28B-G-003-04

Page 64

Epson Research and Development
Vancouver Design Center

REG[103h] BitBLT Operation Register

n/a

n/a

n/a

n/a

BitBLT
Operation
Bit 3

BitBLT
Operation
Bit 2

BitBLT
Operation
Bit 1

BitBLT
Operation
Bit 0

TheBitBLT Operation Register selectsthe BitBLT operation to be carried out based on the
following table:

Table 10-2: BitBLT Operation Selection

BitBLT Operation Bits [3:0]

BitBLT Operation

0000 Write BitBLT with ROP
0001 Read BitBLT
0010 Move BitBLT in positive direction with ROP
0011 Move BitBLT in negative direction with ROP
0100 Transparent Write BitBLT
0101 Transparent Move BitBLT in positive direction
0110 Pattern Fill with ROP
0111 Pattern Fill with transparency
1000 Color Expansion
1001 Color Expansion with transparency
1010 Move BitBLT with Color Expansion
1011 Move BitBLT with Color Expansion and
transparency
1100 Solid Fill
Other combinations Reserved
REG[104h] BitBLT Source Start Address Register 0
BitBLT BitBLT BitBLT BitBLT BitBLT BitBLT BitBLT BitBLT
Source Start | Source Start | Source Start | Source Start | Source Start | Source Start | Source Start | Source Start
Address Address Address Address Address Address Address Address
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O
REG[105h] BitBLT Source Start Address Register 1
BitBLT BitBLT BitBLT BitBLT BitBLT BitBLT BitBLT BitBLT
Source Start | Source Start | Source Start | Source Start | Source Start | Source Start | Source Start | Source Start
Address Address Address Address Address Address Address Address
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
REG[106h] BitBLT Source Start Address Register 2
BitBLT BitBLT BitBLT BitBLT BitBLT
n/a n/a n/a Source Start | Source Start Source Start Source Start Source Start
AdFiress Address Bit 18 Address Bit Address
Bit 20 Bit 19 17 Bit 16
TheBitBLT Source Start Address Registersform a 21-bit register that specifiesthe source
start address for the BitBL T operation selected by the BitBLT Operation Register
(REG[103h]).
S1D13806 Programming Notes and Examples

X28B-G-003-04

Issue Date: 01/02/26

Epson Research and Development
Vancouver Design Center

Page 65

If datais sourced from the CPU, then bit 0 is used for byte alignment within a 16-bit word
and the other address bits are ignored. In pattern fill operation, the BitBLT Source Start
Addressis defined by the following equation:

Source Start Address Register = Pattern Base Address + Pattern Line Offset + Pixel Offset.

The following table shows how Source Start Address Register is defined for 8 and 16 bpp
color depths:

Table 10-3: BitBLT Source Sart Address Selection

Color Format

Pattern Base Address[20:0]

Pattern Line Offset[2:0]

Pixel Offset[3:0]

BitBLT Source Start Address[20:6],

BitBLT Source Start

1'b0, BitBLT Source Start

8 bpp 6'b0 Address[5:3] Address[2:0]
16 b BitBLT Source Start Address[20:7], BitBLT Source Start BitBLT Source Start
PP 7'b0 Address[6:4] Address[3:0]
REG[108h] BitBLT Destination Start Address Register 0
BitBLT BitBLT BitBLT BitBLT BitBLT BitBLT BitBLT BitBLT
Destination Destination Destination Destination Destination Destination Destination Destination
Start Address | Start Address | Start Address | Start Address | Start Address | Start Address | Start Address | Start Address
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit1 Bit 0
REG[109h] BitBLT Destination Start Address Register 1
BitBLT BitBLT BitBLT BitBLT BitBLT BitBLT BitBLT BitBLT
Destination Destination Destination Destination Destination Destination Destination Destination
Start Address | Start Address | Start Address | Start Address | Start Address | Start Address | Start Address | Start Address
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
REG[10Ah] BitBLT Destination Start Address Register 2
BitBLT BitBLT BitBLT BitBLT BitBLT
na n/a n/a Destination Destination Destination Destination Destination
Start Address | Start Address | Start Address | Start Address | Start Address
Bit 20 Bit 19 Bit 18 Bit 17 Bit 16

The BitBLT Destination Start Address Registers form a 21-bit register that specifies the
destination start address for the BitBL T operation selected by the BitBL T Operation
Register (REG[103h]). The destination address represents the upper |eft corner of the
BitBLT rectangle (lower right corner of the BitBL T rectangle for Move BitBLT in
Negative Direction).

Programming Notes and Examples

Issue Date: 01/02/26

S1D13806
X28B-G-003-04

Page 66 Epson Research and Development

Vancouver Design Center

REG[10Ch] BitBLT Memory Address Offset Register 0
BitBLT BitBLT BitBLT BitBLT BitBLT BitBLT BitBLT BitBLT
Memory Memory Memory Memory Memory Memory Memory Memory
Address Address Address Address Address Address Address Address
Offset Bit 7 Offset Bit 6 Offset Bit 5 Offset Bit 4 Offset Bit 3 Offset Bit 2 Offset Bit 1 Offset Bit 0
REG[10Dh] BitBLT Memory Address Offset Register 1
BitBLT BitBLT BitBLT
Memory Memory Memory
n/a n/a n/a n/a n/a Address Address Address
Offset Bit 10 Offset Bit 9 Offset Bit 8

The BitBLT Memory Address Offset Registers form the BitBL Ts 11-bit address offset
from the starting word of line “n” to the starting word of line“n + 1". They are used for
address calculation only when the BitBL T is configured as arectangular region of memory
using the BitBL T Destination/Source Linear Select bits (REG[100h] bits 1-0). They are not

used for the displays.
REG[110h] BitBLT Width Register 0
BitBLT Width | BitBLT Width | BitBLT Width | BitBLT Width | BitBLT Width | BitBLT Width | BitBLT Width | BitBLT Width
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
REG[111h] BitBLT Width Register 1
na nia na na na na BitBLT Width | BitBLT Width
Bit 9 Bit 8
The BitBLT Width Registersform a 10-bit register that specifiesthe BitBLT width in
pixelsless 1.
Note

The BitBLT operations Pattern Fill with ROP and Pattern Fill with transparency require
aBitBLT Width > 1 for 16 bpp color depths and > 2 for 8 bpp.

REG[112h] BitBLT Height Register O

BitBLT Height | BitBLT Height | BitBLT Height | BitBLT Height | BitBLT Height | BitBLT Height | BitBLT Height | BitBLT Height
Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
REG[113h] BitBLT Height Register 1
BitBLT Height | BitBLT Height
n/a n/a n/a n/a n/a n/a Bit 9 Bit 8
The BitBLT Height Registers form a 10-bit register that specifiesthe BitBLT height in
pixelsless 1.
S1D13806

X28B-G-003-04

Programming Notes and Examples

Issue Date: 01/02/26

Epson Research and Development Page 67
Vancouver Design Center
REG[114h] BitBLT Background Color Register 0
BitBLT BitBLT BitBLT BitBLT BitBLT BitBLT BitBLT BitBLT
Background | Background | Background | Background | Background | Background | Background | Background
Color Color Color Color Color Color Color Color
Bit 7 Bit 6 Bit 5 Bit4 Bit 3 Bit 2 Bit 1 Bit O
REG[115h] BitBLT Background Color Register 1
BitBLT BitBLT BitBLT BitBLT BitBLT BitBLT BitBLT BitBLT
Background | Background | Background | Background | Background | Background | Background | Background
Color Color Color Color Color Color Color Color
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

The BitBLT Background Color Registers form a 16-bit register that specifies the BitBLT
background color for Color Expansion or thekey color for transparent BitBL Ts. For 16 bpp
color depth (REG[101h] bit 0 = 1), all 16 bitsare used. For 8 bpp color depth (REG[101h]

bit 0 = 0), only bits 7-0 are used.

REG[118h] BitBLT Foreground Color Register 0
BitBLT BitBLT BitBLT BitBLT BitBLT BitBLT BitBLT BitBLT
Foreground Foreground Foreground Foreground Foreground Foreground Foreground Foreground
Color Color Color Color Color Color Color Color
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
REG[119h] BitBLT Foreground Color Register 1
BitBLT BitBLT BitBLT BitBLT BitBLT BitBLT BitBLT BitBLT
Foreground Foreground Foreground Foreground Foreground Foreground Foreground Foreground
Color Color Color Color Color Color Color Color
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

The BitBL T Foreground Color Registers form a 16-bit register that specifies the BitBLT
foreground color for Color Expansion or the Solid Fill BitBLT. For 16 bpp color depth

(REG[101h] bit 0 = 1), all 16 bits are used. For 8 bpp color depth (REG[101h] bit 0 = 0),
only bits 7-0 are used.

Programming Notes and Examples

Issue Date: 01/02/26

S1D13806
X28B-G-003-04

Page 68

Epson Research and Development
Vancouver Design Center

10.2 BitBLT Descriptions

The S1D13806 supports 13 fundamental BitBLT operations:
e Write BitBLT with ROP.

* Read BitBLT.

* Move BitBLT in positive direction with ROP.

* MoveBitBLT in negative direction with ROP.

* Transparent Write BitBLT.

» Transparent Move BitBLT in positive direction.

* Pattern Fill with ROP.

* Pattern Fill with Transparency.

» Color Expansion.

» Color Expansion with Transparency.

* MoveBitBLT with Color Expansion.

* Move BitBLT with Color Expansion and Transparency.
* Solid Fill.

Most of the 13 operations are self completing. This means once they begin they complete
on their own, not requiring data transfers with the CPU. The remaining five BitBLT opera-
tions (Write BitBLT with ROP, Transparent Write BitBL T, Color Expansion, Color
Expansion with Transparency, Read BitBLT) require data to be written/read to/from the
display buffer. This data must be transferred one word (16-bits) at atime. This does not
imply only 16-bit CPU instructions are acceptable. If a system is able to separate one
DWORD write into two WORD writes and the CPU writes the low word before the high
word, then 32-bit CPU instructions are acceptable. Otherwise, 16-bit CPU instructions are
required.

Thedataisnot directly written/read to/from the display buffer. It iswritten/read to/from the
BitBLT FIFO through the 1M BitBLT aperture specified at the address of REG[100000h].
The 16 word FIFO can be written to only when not full and can be read from only when not
empty. Failing to monitor the FIFO status can result in aBitBLT FIFO overflow or
underflow.

While the FIFO is being written to by the CPU, it isaso being emptied by the S1D13806.
If the S1D 13806 empties the FIFO faster than the CPU can fill it, it may not be possible to
cause an overflow/underflow. In these cases, performance can be improved by not
monitoring the FIFO status. However, thisis very much platform dependent and must be
determined for each system.

Note
When TV with flicker filter is enabled or simultaneous display is active, alwaystest the
FIFO status beforereading from/writing to the FIFO.

S1D13806
X28B-G-003-04

Programming Notes and Examples
Issue Date: 01/02/26

Epson Research and Development Page 69
Vancouver Design Center

10.2.1 Write BitBLT with ROP

The Write BitBL T increases the speed of transferring data from system memory to the
display buffer.

The Write BitBL T with ROP fills a specified area of the display buffer with data supplied
by the CPU. ThisBitBL T istypically used to copy abitmap image from system memory to
the display buffer. The Write BitBL T supports al 16 ROPs, although the most frequent
ROP is ROP 0Ch (Copy Sourceinto Destination). It also supports both Destination Linear
and Destination Rectangular modes.

TheWrite BitBL T requiresthe CPU to provide data. The BitBL T engine expectsto receive
acertain number of WORDS. For 16 bpp color depths, the number of WORDS isthe same
as the number of pixels due to the fact that each pixel is one WORD wide. The number of
WORD writesthe BitBL T engine expects is calculated using the following formula.

nWORDS = nPixels
= BitBLTWidth x BitBLTHeight

For 8 bpp color depths, the formula must take into consideration that the BitBLT engine
accepts only WORD accesses and each pixel isone BY TE. The BitBLT engine needs to
know whether the first pixel of alineis stored in the low byte or high byte. Thisis deter-
mined by bit 0 of the Source Start Address Register 0 (REG[104h]). If the Source Phaseis
1 (bit O of the Source Start Address Register 0 is set), the first pixel of each lineisin the
high byte of the WORD and the contents of the low byte are ignored. If the Source Phase
is0, thefirst pixel isinthelow byte and the second pixel isin the high byte. Depending on
the Source Phase and the BitBL T Width, the last WORD may contain only one pixel. In
this caseit is awaysin the low byte. The number of WORD writesthe BitBLT engine
expects for 8 bpp color depthsis shown in the following formula.

NWORDS = ((BitBLTWidth + 1 + SourcePhase) + 2) x BitBLTHeight

Note
The BitBLT engine counts WORD writes in the BitBL T address space. This does not
imply only 16-bit CPU instructions are acceptable. If asystem is able to separate one
DWORD writeinto two WORD writes and the CPU writesthe low word before the high
word, then 32-bit CPU instructions are acceptable. Otherwise, 16-bit CPU instructions
arerequired.

Programming Notes and Examples S1D13806
Issue Date: 01/02/26 X28B-G-003-04

Page 70

Epson Research and Development
Vancouver Design Center

Example 9: Write a 100 x 20 rectangle at the screen coordinates x =25, y = 38 using

a 640x480 display at a color depth of 8 bpp.

1. Caculate the destination address (upper left corner of the screen BitBL T rectangle)

using the following formula.

DestinationAddress = (y x ScreenStride) + (x x BytesPerPixel)
= (38 x 640) + (25 x 1)
= 24345
= 5F19h

where:

BytesPerPixel = 1 for 8 bpp

BytesPerPixel = 2 for 16 bpp

ScreenStride = DisplayWidthinPixels x BytesPerPixel = 640 for 8 bpp

Program the BitBL T Destination Start Address Registers. REG[10Ah] is set to Q0h,
REG[109h] is set to 5Fh, and REG[108h] is set to 19h.

Program the BitBL T Width Registersto 100 - 1. REG[111h] is set to 00h and
REG[110h] is set to 63h (99 decimal).

Program the BitBLT Height Registersto 20 - 1. REG[113h] is set to 00h and
REG[112h] is set to 13h (19 decimal).

Program the Source Phasein the BitBLT Source Start Address Register. In this exam-
plethe datais WORD aligned, so the source phaseis 0. REG[104h] is set to 00h.

Program the BitBLT Operation Register to select the Write BitBLT with ROP.
REG[103h] is set to 00h.

Program the BitBLT ROP Code Register to select Destination = Source. REG[102h]
is set to OCh.

Program the BitBLT Color Format Select bit for 8 bpp operations. REG[101h] is set
to O0h.

Program the BitBLT Memory Offset Registers to the ScreenStridein WORDS:
BLTMemoryOffset = DisplayWidthinPixels + BytesPerPixel
=640+ 2
= 140h

REG[10DH] is set to 01h and REG[10Ch] is set to 40h.

Calculate the number of WORDS the BitBL T engine expectsto receive.

nWORDS = ((BLTWidth + 1 + SourcePhase) +~ 2) x BLTHeight
=(100+1)+2x20
= 1000
= 3E8h

S1D13806
X28B-G-003-04

Programming Notes and Examples
Issue Date: 01/02/26

Epson Research and Development
Vancouver Design Center

Page 71

10. Program the BitBL T Destination/Source Linear Select bitsfor arectangular BitBLT
(BitBLT Destination Linear Select = 0, BitBLT Source Linear Select = 0).

Start the BitBL T operation and wait for the BitBL T engineto start. REG[100h] is

set to 80h, then wait until REG[100h] bit 7 returnsa 1.

11. Prior to writing all NWORDS to the BitBLT FIFO, confirm the BitBLT FIFO is not
full (REG[100h] bit 4 returns a 0). If the BitBLT FIFO Not Empty Status returnsa 0
(the FIFO is empty), write up to 16 WORDS. If the BitBLT FIFO Not Empty Status
returns a1l and the BitBLT FIFO Half Full Status returns a0 then you can write up to
8 WORDS. If the BitBLT FIFO Full Status returns a 1, do not write to the BitBLT
FIFO until it returnsaO.

The following table summarizes how many words can be written to the BitBLT FIFO.

Table 10-4: Possible BitBLT FIFO Writes

BitBLT Control Register 0 (REG[100h]) Word Writes
FIFO Not Empty Status FIFO Half Full Status FIFO Full Status Available
0 0 0 16
1 0 0 8
1 1 0 upto8
1 1 1 0 (do not write)

12. Oncethe BitBLT operation isfinished, read one word from offset 0 in the BitBLT
memory areato shutdown the BitBLT engine.

Note

The order of register initialization isirrelevant aslong as all relevant registers are pro-
grammed before the BitBL T is started.

Programming Notes and Examples
Issue Date: 01/02/26

S1D13806
X28B-G-003-04

Page 72 Epson Research and Development
Vancouver Design Center

10.2.2 Color Expand BitBLT

This Color Expand BitBL T issimilar to the Write BitBLT. It differsin that abit setto 1in
the source data becomes a pixel of foreground color. A source bit set to O is converted to a
pixel of background color. This function increases the speed of writing text whilein
graphical modes.

ThisBitBLT operation includes several options which enhanceits text handling capabil -
ities. Aswith the Write BitBLT, all datasent to the BitBLT engine must be word (16-bit)
writes. The BitBL T engine expandsthelow byte, then the high byte starting at bit 7 of
each byte. The start byte of thefirst WORD to be expanded and the start bit position within
this byte must be specified. The start byte position is selected by setting source address bit
0 to O to start expanding the low byte or 1 to start expanding the high byte.

Partially “masked” color expand BitBL T can be used when drawing a portion of a pattern
(i.e. aportion of a character) on the screen. The following examples illustrate how one
WORD is expanded using the Color Expand BitBLT.

1. To expand bits 0-1 of the word:

Source Address=0
Start Bit Position = 1
BitBLT Width=2

The following bits are expanded.

Word Sent To BitBLT Engine
15 8 7 0

High Byte Low Byte
2. To expand bits 0-15 of the word (entire word)

Source Address=0
Start Bit Position = 7 (bit seven of the low byte)
BitBLT Width = 16

The following bits are expanded.

Word Sent To BitBLT Engine
15 8 7 0

High Byte Low Byte

S1D13806 Programming Notes and Examples
X28B-G-003-04 Issue Date: 01/02/26

Epson Research and Development Page 73
Vancouver Design Center

3. Toexpand bits 8-9 of the word

Source Address=1
Start Bit Position =1
BitBLT Width=2

The following bits are expanded.

Word Sent To BitBLT Engine
15 8 7 0

High Byte Low Byte
4. To expand bits 0,15-14 of the word

Source Address=0
Start Bit Position =0
BitBLT Width=3

The following bits are expanded.

Word Sent To BitBLT Engine
15 8 7 0

High Byte Low Byte

All subsequent WORDS in one BitBLT line are then serially expanded starting at bit 7 of
the low byte until the end of the BitBLT line. All unused bitsin the last WORD are
discarded. It is extremely important that the exact number of WORDS is provided to the
BitBLT engine. The number of WORDS is calculated from the following formula. This
formulaisvalid for al color depths (8/16 bpp).

nWords = ((Sx MOD 16 + BitBLTWidth + 15) = 16) x BitBL THeight

where:
Sx isthe X coordinate of the starting pixel in aword aligned monochrome bitmap.

Monochrome Bitmap
Byte 1 Byte 2

Sx= 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Programming Notes and Examples S1D13806
Issue Date: 01/02/26 X28B-G-003-04

Page 74 Epson Research and Development
Vancouver Design Center

Example 10: Color expand a rectangle of 12 x 18 starting at the coordinates
Sx =125, Sy = 17 using a 640x480 display at a color depth of 8 bpp.

This example assumes a monochrome, WORD aligned bitmap of dimensions 300 x 600
withtheorigin at an address A. The color expanded rectangle will be displayed at the screen
coordinates X = 20, Y = 30. The foreground color correspondsto the LUT entry at index
134, the background color to index 124.

1. First we need to calculate the address of the WORD within the monochrome bitmap
containing the pixel x =125y = 17.

SourceAddress = BitmapOrigin + (y x SourceStride) + (x + 8)

= A + (Sy x SourceStride) + (Sx + 8)
=A +(17x 38) + (125 + 8)

=A+646+15
=A +661
where:
SourceStride = (BitmapWidth + 15) + 16

= (300 + 15) +~ 16
=19 WORDS per line
=38BYTES per line

2. Calculate the destination address (upper left corner of the screen BitBLT rectangle)
using the following formula.

DestinationAddress = (Y x ScreenStride) + (X x BytesPerPixel)
= (30 x 640) + (20 x 1)
= 19220
=4B14h

where:

BytesPerPixel = 1 for 8 bpp

BytesPerPixel = 2 for 16 bpp

ScreenStride = DisplayWidthinPixels x BytesPerPixel = 640 for 8 bpp

Program the BitBL T Degtination Start Address Registers. REG[10Ah] is set to 00h,
REG[109h] is set to 4Bh, and REG[108h] is set to 14h.

3. Program the BitBLT Width Registersto 12 - 1. REG[111h] is set to 00h, REG[110h]
isset to OBh (11 decimal).

4. Program the BitBLT Height Registersto 18 - 1. REG[113h] is set to 00h, REG[112h]
isset to 11h (17 decimd).

5. Program the Source Phasein the BitBLT Source Start Address Register. In this exam-
ple the source address equals A + 661 (odd), so REG[104h] isset to 1.

Since only hit O flags the source phase, more efficient code would simply write the
low byte of the SourceAddress into REG[104h] directly -- not needing to test for an
odd/even address. Note that in 16 bpp color depths the Source address is guaranteed to
be even.

S1D13806 Programming Notes and Examples
X28B-G-003-04 Issue Date: 01/02/26

Epson Research and Development Page 75

Vancouver Design Center

10.

11.

12.

Program the BitBLT Operation Register to select the Color Expand BitBLT.
REG[103h] is set to 08h.

Program the Color Expansion Register. The formula for this exampleis as follows.

Reg[102h] =7-(Sx MOD 8)
=7- (125 MOD 8)
=7-5
=2
REG[102h] is set to 02h.

Program the Background Color Registers to the background color. REG[115h] is set
to 00h and REG[114h] is set to 7Ch (124 decimal).

Note that for 16 bpp color depths, REG[115h] and REG[114h] are both required and
programmed directly with the value of the background color.

Program the Foreground Color Registersto the foreground color. REG[119h] is set to
00h and REG[118h] is set to 86h (134 decimal).

Note that for 16 bpp color depths REG[119h] and Reg[118h] are both required and
programmed directly with the value of the foreground color.

Program the BitBLT Color Format Register for 8 bpp operation. REG[101h] is set to
0oh.

Program the BitBLT Memory Offset Registersto the ScreenStride in WORDS.
BItMemoryOffset = ScreenStride + 2
=640+ 2
= 140h

REG[10Dh] is set to 01h and REG[10Ch] is set to 40h.

Calculate the number of WORDS the BitBL T engine expects to receive.
First, the number of WORDS in one BitBL T line must be calculated as follows.

nWordsOneLine =((125MOD 16) + 12 + 15) + 16
=(13+12+15)+ 16
=40+ 16
=2
Therefore, the total WORDS the BitBL T engine expectsto receiveis calculated as
follows.

nWords = nWordsOneLine x 18
=2x18
=36

Programming Notes and Examples

Issue Date: 01/02/26

S1D13806
X28B-G-003-04

Page 76 Epson Research and Development
Vancouver Design Center

13. Program the BitBL T Destination/Source Linear Select bits for arectangular BitBLT
(BitBLT Destination Linear Select = 0, BitBL T Source Linear Select = 0).

Start the BitBL T operation and wait for the BitBLT Engineto start. REG[100h] is
set to 80h, then wait until REG[100h] bit 7 returnsa 1.

14. Prior to writing al NWORDS to the BitBLT FIFO, confirm the BitBLT FIFO is not
full (REG[100h] bit 4 returns a 0). One WORD expands into 16 pixelswhich fills all
16 FIFO wordsin 16 bpp or 8 FIFO words in 8 bpp.

The following table summarizes how many words can be written to the BitBLT FIFO.

Table 10-5: Possible BitBLT FIFO Writes

BitBLT Control Register 0 (REG[100h]) 8 bpp Word 16 bpp Word
FIFO Not Empty Status | FIFO Half Full Status FIFO Full Status Writes Available | Writes Available
0 0 0 2 1
1 0 0 1
1 1 0 0 (do not write
i i i 0 (do not write) ()

15. Oncethe BitBLT operation is finished, read one word from offset O in the BitBLT
memory area to shutdown the BitBL T engine.

Note
The order of register initialization isirrelevant as long as al relevant registers are pro-
grammed before the BitBLT is initiated.

10.2.3 Color Expand BitBLT With Transparency

ThisBitBLT operation is virtually identical to the Color Expand BitBL T, except the
background color is completely ignored. All bitsset to 1 in the source monochrome bitmap
are color expanded to the foreground color. All bits set to 0 that would be expanded to the
background color in the Color Expand BitBLT are not expanded at all.

Program REG[103h] to 09h instead of 08h. Programming the background color is not
required.

S1D13806 Programming Notes and Examples
X28B-G-003-04 Issue Date: 01/02/26

Epson Research and Development Page 77
Vancouver Design Center

10.2.4 Solid Fill BitBLT

The Solid Fill BitBLT fills arectangular area of the display buffer with asolid color. This
operation is used to paint large screen areas or to set areas of the display buffer to a given
value.

Example 11: Fill ared 9 x 321 rectangle at the screen coordinates x = 100, y = 10 us-
ing a 640x480 display at a color depth of 16 bpp.

1. Caculate the destination address (upper left corner of the destination rectangle) using
the following formula.

DestinationAddress = (y x ScreenStride) + (x x BytesPerPixel)
= (10 x (640 x 2)) + (100 x 2)
= 13000
= 32C8h

where:

BytesPerPixel = 1 for 8 bpp

BytesPerPixel = 2 for 16 bpp

ScreenStride = DisplayWidthinPixels x BytesPerPixel = 1280 for 16 bpp.

Program the BitBL T Destination Start Address Registers. REG[10Ah] is set to 00h,
REG[109h] is set to 32h, and REG[108h] is set to C8h.

2. Program the BitBLT Width Registersto 9 - 1. REG[111h] is set to 00h and
REG[110h] is set to 08h.

3. Program the BitBLT Height Registersto 321 - 1. REG[113h] is set to 01h and
REG[112h] is set to 40h (320 decimal).

4. Program the BitBLT Foreground Color Registers. REG[119h] is set to F8h and
REG[118h] is set to 00h (Full intensity red in 16 bpp is F800h).

5. Program the BitBLT Operation Register to select Solid Fill. REG[103h] is set to OCh.

6. Program the BitBLT Color Format Register for 16 bpp operations. REG[101h] is set
to 01h.

7. Program the BitBLT Memory Offset Registersto the ScreenStride in WORDS.

BltMemoryOffset = ScreenStride + 2
=640
= 280h

REG[10Dh] is set to 02h and REG[10CHh] is set to 80h.

8. Program the BitBL T Destination/Source Linear Select bitsfor arectangular BitBLT
(BitBLT Destination Linear Select = 0, BitBLT Source Linear Select = 0).

Start the BitBL T operation. REG[100h] is set to 80h.

Programming Notes and Examples S1D13806
Issue Date: 01/02/26 X28B-G-003-04

Page 78 Epson Research and Development
Vancouver Design Center

9. OncetheBitBLT operation is finished, read one word from offset 0 in the BitBLT
memory areato shutdown the BitBLT engine.

Note
The order of register initialization isirrelevant as long as al relevant registers are pro-
grammed before the BitBL T isinitiated.

10.2.5 Move BitBLT in a Positive Direction with ROP

The Move BitBLT moves an area of the display buffer to a different area of the display
buffer. This operation has two intended purposes:

» Copying unattended display buffer to display buffer.
 Saving avisible bitmap to off-screen display buffer.

The Move BitBLT may move data from one rectangular area to another, or it may be
specified aslinear. This allows the temporary saving of a portion of the visible display
buffer to an area off-screen. Thelinear configuration may be applied to the source or desti-
nation. Defining the Move BitBLT aslinear allows each line of the Move BitBLT areato
be placed directly after the previous line, rather than requiring a complete row of address
space for each line.

Note
When the destination area overlaps the original source area and the destination address
is greater then the source address, use the Move BitBL T in Negative Direction with

ROP.
D S
S D
Destination Address less than Source Address Destination Address greater than Source Address
Use Move BitBLT in Positive Direction Use Move BitBLT in Negative Direction
Figure 10-1: Move BitBLT Usage
S1D13806 Programming Notes and Examples

X28B-G-003-04 Issue Date: 01/02/26

Epson Research and Development Page 79
Vancouver Design Center

Example 12: Copy a 9 x 321 rectangle at the screen coordinates x = 100, y =10 to
screen coordinates x = 200, y = 20 using a 640x480 display at a color
depth of 16 bpp.

1. Caculate the source and destination addresses (upper left corners of the source and
destination rectangles), using the following formula.

SourceAddress = (y x ScreenStride) + (x x BytesPerPixel)
= (10 x (640 x 2)) + (100 x 2)
= 13000
=32C8h

DestinationAddress = (y x ScreenStride) + (x x BytesPerPixel)
= (20 x (640 x 2)) + (200 x 2)
= 26000
= 6590h

where:

BytesPerPixel = 1 for 8 bpp

BytesPerPixel = 2 for 16 bpp

ScreenStride = DisplayWidthinPixels x BytesPerPixel = 1280 for 16 bpp

Program the BitBLT Source Start Address Registers. REG[106h] is set to 00h,
REG[105h] is set to 32h, and REG[104h] is set to C8h.

Program the BitBL T Destination Start Address Registers. REG[10Ah] is set to 00h,
REG[109h] is set to 65h, and REG[108h] is set to 90h.

2. Program the BitBLT Width Registersto 9 - 1. REG[111h] is set to 00h and
REG[110h] is set to 08h.

3. Program the BitBLT Height Registersto 321 - 1. REG[113h] is set to 01h and
REG[112h] is set to 40h (320 decimal).

4. Program the BitBLT Operation Register to select the Move BitBLT in Positive Direc-
tion with ROP. REG[103h] is set to 02h.

5. Program the BitBLT ROP Code Register to select Destination = Source. REG[102h]
is set to OCh.

6. Program the BitBLT Color Format Select bit for 16 bpp operations. REG[101h] is set
to 01h.

7. Program the BitBLT Memory Offset Registers to the ScreenStride in WORDS.

BltMemoryOffset = ScreenStride + 2
=640
=280h

REG[10Dh] is set to 02h and REG[10CH] is set to 80h.

Programming Notes and Examples S1D13806
Issue Date: 01/02/26 X28B-G-003-04

Page 80 Epson Research and Development
Vancouver Design Center

8. Program the BitBL T Destination/Source Linear Select bits for arectangular BitBLT
(BitBLT Destination Linear Select = 0, BitBL T Source Linear Select = 0).

Start the BitBL T operation. REG[100h] is set to 80h.

9. OncetheBitBLT operation is finished, read one word from offset 0 in the BitBLT
memory area to shutdown the BitBL T engine.

Note
The order of register initialization isirrelevant as long as al relevant registers are pro-
grammed before the BitBLT is initiated.

10.2.6 Move BitBLT in Negative Direction with ROP

The Move BitBLT in Negative Direction with ROP is very similar to the Move BitBLT in
Positive direction and must be used when the source and destination BitBLT areas overlap
and the destination address is greater then the source address.

Note
For the Move BitBL T in Negative Direction it is necessary to calculate the addresses of
the last pixel as opposed to the first pixel. This means calculating the addresses of the
lower right corners as opposed to the upper |eft corners.

Example 13: Copy a 9 x 321 rectangle at the screen coordinates x =100,y =10 to
screen coordinates X =105, Y = 20 using a 640x480 display at a color
depth of 16 bpp.

In the following example, the coordinates of the source and destination rectangles inten-
tionally overlap.

1. Caculate the source and destination addresses (lower right corners of the source and
destination rectangles) using the following formula.

SourceAddress
= ((y + Height - 1) x ScreenStride) + ((x + Width - 1) x BytesPerPixel)
=((10+321-1) x (640 x 2)) +((100+9-1) x 2)
= 422616
=672D8h

DestinationAddress
=((Y + Height - 1) x ScreenStride) + ((X + Width - 1) x BytesPerPixel)
=((20+321-1) x (640 x 2)) + ((105+9-1) x 2)
= 435426
= 6A4E2h

where:

BytesPerPixel = 1 for 8 bpp

BytesPerPixel = 2 for 16 bpp

ScreenStride = DisplayWidthinPixels x BytesPerPixel = 1280 for 16 bpp

S1D13806 Programming Notes and Examples
X28B-G-003-04 Issue Date: 01/02/26

Epson Research and Development Page 81
Vancouver Design Center

Program the BitBLT Source Start Address Registers. REG[106h] is set to 06h,
REG[105h] is set to 72h, and REG[104h] is set to D8h.

Program the BitBLT Destination Start Address Registers. REG[10Ah] is set to 06h,
REG[109h] is set to Adh, and REG[108h] is set to E2h.

2. Program the BitBLT Width Registersto 9 - 1. REG[111h] is set to 00h and
REG[110h] is set to 08h.

3. Program the BitBLT Height Registersto 321 - 1. REG[113h] is set to 01h and
REG[112h] is set to 40h (320 decimal).

4. Program the BitBLT Operation Register to select the Move BitBL T in Negative Di-
rection with ROP. REG[103] is set to 03h.

5. Program the BitBLT ROP Code Register to select Destination = Source. REG[102h]
is set to OCh.

6. Program the BitBLT Color Format Select bit for 16 bpp operations. REG[101h] is set
to 01h.

7. Program the BitBLT Memory Offset Registers to the ScreenStride in WORDS.

BltMemoryOffset = ScreenStride + 2
=640
=280h

REG[10Dh] is set to 02h and REG[10CH] is set to 80h.

8. Program the BitBL T Destination/Source Linear Select bitsfor arectangular BitBLT
(BitBLT Destination Linear Select =0, BitBLT Source Linear Select = 0).

Start the BitBL T operation. REG[100h] is set to 80h.

9. OncetheBitBLT operation isfinished, read one word from offset O in the BitBLT
memory areato shutdown the BitBLT engine.

Note
The order of register initialization isirrelevant aslong as all relevant registers are pro-
grammed before the BitBLT isinitiated.

Programming Notes and Examples S1D13806
Issue Date: 01/02/26 X28B-G-003-04

Page 82 Epson Research and Development
Vancouver Design Center

10.2.7 Transparent Write BitBLT

The Transparent Write BitBL T increases the speed of transferring data from system
memory to the display buffer. Once the Transparent Write BitBLT begins, the BitBLT
engine remains active until all pixels have been written.

The Transparent Write BitBL T updates a specified area of the display buffer with data
supplied by the CPU. This BitBLT istypically used to copy a bitmap image from system
memory to the display buffer with one color marked as transparent. Any pixel of the trans-
parent color is not transferred. This allows fast display of non-rectangular images. For
example, consider a source bitmap having ared circle on a blue background. By selecting
the blue color asthetransparent color and using the Transparent Write BitBLT onthewhole
rectangle, the effect isa BitBLT of thered circle only. The Transparent Write BitBLT
supports both Destination Linear and Destination Rectangular modes.

The Transparent Write BitBL T requires the CPU to provide data. The BitBL T engine
expectsto receive a certain number of WORDS. For 16 bpp color depths, the number of
WORDS isthe same as the number of pixels due to the fact that each pixel is one WORD
wide. The number of WORD writesthe BitBL T engine expectsis cal culated using the
following formula.

nWORDS = nPixels
= BitBLT Width x BitBLT Height

For 8 bpp color depths, the formula must take into consideration that the BitBLT engine
accepts only WORD accesses and each pixel isone BY TE. The BitBLT engine needs to
know whether thefirst pixel of alineisstored in the low byte or high byte. Thisis deter-
mined by bit O of the Source Start Address Register 0 (REG[104h]). If the Source Phase is
1 (bit O of the Source Start Address Register 0 is set), the first pixel of each lineisin the
high byte of the WORD and the contents of the low byte are ignored. If the Source Phase
isO, thefirst pixel isin the low byte and the second pixel isin the high byte. Depending on
the Source Phase and the BitBL T Width, thelast WORD in each line may contain only one
pixel. Itisawaysinthelow byteif more than one WORD per lineisrequired. The number
of WORD readsthe BitBL T engine expectsfor 8 bpp color depthsisshowninthefollowing
formula.

NWORDS = ((BitBL TWidth + 1 + SourcePhase) + 2) x BitBL THeight

Note
The BitBLT engine counts WORD writesin the BitBL T address space. This does not
imply only 16-bit CPU instructions are acceptable. If a system is able to separate one
DWORD write into two WORD writes, then 32-bit CPU instructions are acceptable.
Otherwise, 16-bit CPU instructions are required.

S1D13806 Programming Notes and Examples
X28B-G-003-04 Issue Date: 01/02/26

Epson Research and Development Page 83
Vancouver Design Center

Example 14: Write 100 x 20 pixels at the screen coordinates x = 25,y = 38 using a
640x480 display at a color depth of 8 bpp. Transparent color is high in-
tensity blue (assumes LUT Index 124).

1. Caculate the destination address (upper left corner of the screen BitBL T rectangle),
using the formula:

DestinationAddress = (y x ScreenStride) + (x x BytesPerPixel)
=(38x640) + (25x 1)
= 24345
=5F19h

where:

BytesPerPixel =1 for 8 bpp

BytesPerPixel = 2 for 16 bpp

ScreenStride = DisplayWidthinPixels x BytesPerPixel = 640 for 8 bpp

Program the BitBL T Destination Start Address Registers. REG[10Ah] is set to 00h,
REG[109h] is set to 5Fh, and REG[108h] is set to 19h.

2. Program the BitBLT Width Registersto 100 - 1. REG[111h] is set to 00h and
REG[110h] is set to 63h (99 decimal).

3. Program the BitBLT Height Registersto 20 - 1. REG[113h] is set to 00h and
REG[112h] is set to 13h (19 decimal).

4. Program the Source Phasein the BitBLT Source Start Address Register. In this exam-
ple, the datais WORD aligned, so the source phase is 0. REG[104h] is set to 00h.

5. Program the BitBLT Operation Register to select Transparent Write BitBLT.
REG[103h] is set to 04h.

6. Program the BitBLT Background Color Registersto select transparent color.
REG[114h] is set to 7Ch (124 decimal).

Note that for 16 bpp color depths, REG[115h] and REG[114h] are both required and
programmed directly with the value of the transparent background color.

7. Program the BitBLT Color Format Select bit for 8 bpp operations. REG[101h] is set
to 00h.

8. Program the BitBLT Memory Offset Registers to the ScreenStride in WORDS.
BltMemoryOffset = ScreenStride + 2
=640+ 2
=320
= 140h

REG[10Dh] is set to 01h and REG[10Ch] is set to 40h.

Programming Notes and Examples S1D13806
Issue Date: 01/02/26 X28B-G-003-04

Page 84 Epson Research and Development
Vancouver Design Center

9. Calculate the number of WORDS the BitBL T engine expects to receive.

nWORDS = ((BLTWidth + 1 + SourcePhase) + 2) x BLTHeight
=(100+1+0)+2x20
= 1000
= 3E8h

10. Program the BitBL T Destination/Source Linear Select bits for arectangular BitBLT
(BitBLT Destination Linear Select = 0, BitBL T Source Linear Select = 0).

Start the BitBL T operation and wait for the BitBL T engineto start. REG[100h] is
set to 80h, then wait until REG[100h] bit 7 returnsa 1.

11. Prior to writing all NWORDS to the BitBLT FIFO, confirm the BitBLT FIFO is not
full (REG[100h] bit 4 returnsa0). If the BitBLT FIFO Not Empty Statusreturnsa 0
(the FIFO is empty), write up to 16 WORDS. If the BitBLT FIFO Not Empty Status
returns a 0 and the BitBLT FIFO Half Full Status returns a0 then you can write up to
8 WORDS. If the BitBLT FIFO Full Status returnsa 1, do not write to the BitBLT
FIFO until it returnsaO.

The following table summarizes how many words can be written to the BitBLT FIFO.

Table 10-6: Possible BitBLT FIFO Writes

BitBLT Control Register 0 (REG[100h]) Word Writes
FIFO Not Empty Status FIFO Half Full Status FIFO Full Status Available
0 0 0 16
1 0 0 8
1 1 0 less than 8
1 1 1 0 (do not write)

12. Oncethe BitBLT operation is finished, read one word from offset O in the BitBLT
memory area to shutdown the BitBL T engine.

Note
The order of register initialization isirrelevant as long as all relevant registers are pro-
grammed before the BitBLT is initiated.

S1D13806 Programming Notes and Examples
X28B-G-003-04 Issue Date: 01/02/26

Epson Research and Development Page 85
Vancouver Design Center

10.2.8 Transparent Move BitBLT in Positive Direction

The Transparent Move BitBLT in Positive Direction moves an area of the display buffer to
adifferent area of the display buffer. It allows for selection of atransparent color which is
not copied during the BitBLT. This allows fast display of non-rectangular images. For
example, consider a source hitmap having ared circle on a blue background. By selecting
the blue color as the transparent color and using the Transparent Move BitBL T on the
whole rectangle, the effect isa BitBL T of the red circle only.

The Transparent Move BitBLT may move datafrom one rectangul ar area to another, or it
may be specified aslinear. The linear configuration may be applied to the source or desti-
nation. Defining the Move BitBLT as linear allows each line of the Move BitBL T areato
be placed directly after the previous line, rather than requiring a complete row of address
space for each line.

Note
The Transparent Move BitBLT is supported only in a positive direction.

Example 15: Copy a 9 x 321 rectangle at the screen coordinates x = 100, y =10 to
screen coordinates X = 200, Y = 20 using a 640x480 display at a color
depth of 16 bpp. Transparent color is blue.

1. Caculate the source and destination addresses (upper left corners of the source and
destination rectangles), using the formula:

SourceAddress = (y x ScreenStride) + (x x BytesPerPixel)
= (10 x (640 x 2)) + (100 x 2)
=13000
=32C8h

DestinationAddress = (Y x ScreenStride) + (X x BytesPerPixel)
= (20 x (640 x 2)) + (200 x 2)
= 26000
= 6590h

where:

BytesPerPixel = 1 for 8 bpp

BytesPerPixel = 2 for 16 bpp

ScreenStride = DisplayWidthinPixels x BytesPerPixel = 1280 for 16 bpp

Program the BitBL T Source Start Address Registers. REG[106h] is set to 00h,
REG[105h] is set to 32h, and REG[104h] is set to C8h.

Program the BitBL T Destination Start Address Registers. REG[10Ah] is set to 00h,
REG[109h] is set to 65h, and REG[108h] is set to 90h.

2. Program the BitBLT Width Registersto 9 - 1. REG[111h] is set to 00h and
REG[110h] is set to 08h.

3. Program the BitBLT Height Registersto 321 - 1. REG[113h] is set to 01h and
REG[112h] is set to 40h (320 decimal).

Programming Notes and Examples S1D13806
Issue Date: 01/02/26 X28B-G-003-04

Page 86

Epson Research and Development
Vancouver Design Center

4. Program the BitBLT Operation Register to select the Transparent Move BitBLT in
Positive Direction. REG[103h] is set to 05h.

5. Program the BitBLT Background Color Registersto select blue as the transparent col-
or. REG[115h] is set to 00h and REG[114h] is set to 1Fh (Full intensity bluein 16 bpp
is001Fh).

6. ProgramtheBitBLT Color Format Register to select 16 bpp operations. REG[101h] is
set to 01h.

7. Program the BitBLT Memory Offset Registers to the ScreenStride in WORDS.

BltMemoryOffset = ScreenStride + 2
=640
= 280h

REG[10DH] is set to 02h and REG[10Ch] is set to 80h.

8. Program the BitBL T Destination/Source Linear Select bits for arectangular BitBLT
(BitBLT Destination Linear Select = 0, BitBL T Source Linear Select = 0).

Start the BitBL T operation. REG[100h] is set to 80h.

9. OncetheBitBLT operation isfinished, read one word from offset 0 in the BitBLT
memory area to shutdown the BitBL T engine.

Note
The order of register initialization isirrelevant as long as al relevant registers are pro-
grammed before the BitBLT is initiated.

10.2.9 Pattern Fill BitBLT with ROP

The Pattern Fill BitBLT with ROP fills a specified rectangular area of the display buffer
with a pattern. The fill patternis an array of pixels stored in off-screen display buffer. The
fill pattern islimited to an eight by eight pixel array and must be loaded to off-screen
memory prior to the BitBL T starting. The pattern can be logically combined with the desti-
nation using all 16 ROP codes, but typically the copy pattern ROP isused (ROP code OCh).

The pattern itself must be stored in a consecutive array of pixels. Asapattern is defined to
be 8x8 pixels, thisresultsin 64 consecutive bytes for 8 bpp color depths and 128 bytes for
16 bpp color depths. For 8 bpp color depths the pattern must begin on a 64 byte boundary,
for 16 bpp color depths the pattern must begin on a 128 byte boundary.

Tofill an area using the pattern BitBL T, the BitBLT engine requires the location of the
pattern, the destination rectangle position and size, and the ROP code. The BitBL T engine
al so needsto know which pixel from the patternisthefirst pixel in the destination rectangle
(the pattern start phase). This allows seamless redrawing of any part of the screen using the
pattern fill.

S1D13806
X28B-G-003-04

Programming Notes and Examples
Issue Date: 01/02/26

Epson Research and Development Page 87
Vancouver Design Center

Example 16: Fill a 100 x 250 rectangle at the screen coordinates x =10, y = 20 with
the pattern in off-screen memory at offset 10 0000h using a 640x480 dis-
play at a color depth of 8 bpp. The first pixel (upper left corner) of the
rectangle is the pattern pixel at x =3,y = 4.

1. Cadculatethe destination address (upper left corner of the destination rectangle), using
the formula

DestinationAddress = (y x ScreenStride) + (x x BytesPerPixel)
= (20 x 640) + (10 x 1)
=12810
= 320Ah

where:

BytesPerPixel =1 for 8 bpp

BytesPerPixel = 2 for 16 bpp

ScreenStride = DisplayWidthinPixels x BytesPerPixels = 640 for 8 bpp

Program the BitBL T Destination Start Address Registers. REG[10Ah] is set to 00h,
REG[109h] is set to 32h, and REG[108h] is set to OAh.

2. Calculate the source address. Thisisthe address of the pixd in the pattern that is the
origin of the destination fill area. The pattern begins at offset 1M, but the first pattern
pixel isat x = 3,y = 4. Therefore, an offset within the pattern itself must be calculated.

SourceAddress

= PatternOffset + StartPatternY x 8 x BytesPerPixel + StartPatternX x BytesPerPixel
=IM+(4x8x1)+(3x1)

=1M + 35

= 1048611

=100023h

where:
BytesPerPixel = 1 for 8 bpp
BytesPerPixel = 2 for 16 bpp

Program the BitBLT Source Start Address Registers. REG[106h] is set to 10h,
REG[105h] is set to 00h, and REG[104h] is set 23h.

3. Programthe BitBLT Width Registersto 100 - 1. REG[111h] is set to 00h, REG[110h]
is set to 63h (99 decimal).

4. Program the BitBLT Height Registersto 250-1. REG[113h] is set to 00h, and
REG[112h] is set to FOh (249 decimal).

5. Program the BitBLT Operation Register to select the Pattern Fill with ROP.
REG[103h] is set to 06h.

6. Program the BitBLT ROP Code Register to select Destination = Source. REG[102h]

is set to OCh.
7. Program the BitBLT Color Format Select bit for 8 bpp operations. REG[101h] is set
to OOh.
Programming Notes and Examples S1D13806

Issue Date: 01/02/26 X28B-G-003-04

Page 88 Epson Research and Development
Vancouver Design Center

8. Program the BitBLT Memory Offset Registers to the ScreenStride in WORDS.

BltMemoryOffset = ScreenStride + 2
=640+ 2
=320
= 140h

REG[10DH] is set to 01h and REG[10Ch] is set to 40h.

9. Program the BitBL T Destination/Source Linear Select bits for arectangular BitBLT
(BitBLT Destination Linear Select = 0, BitBLT Source Linear Select = 0).

Start the BitBL T operation. REG[100h] is set to 80h.

10. Oncethe BitBLT operation is finished, read one word from offset O in the BitBLT
memory area to shutdown the BitBL T engine.

Note
The order of register initialization isirrelevant as long as al relevant registers are pro-
grammed before the BitBLT is initiated.

10.2.10 Pattern Fill BitBLT with Transparency

The Pattern Fill BitBLT with Transparency fills a specified rectangular area of the display
buffer with a pattern. When atransparent color is selected, pattern pixels of the transparent
color will not get copied, allowing creation of hatched patterns. The fill pattern is an eight
by eight array of pixels stored in off-screen display buffer. The fill pattern must be loaded
to off-screen display buffer prior to the BitBL T starting.

The pattern itself must be stored in a consecutive array of pixels. Asapattern is defined to
be eight pixels square, this results in 64 consecutive bytes for 8 bpp color depths and 128
bytes for 16 bpp color depths. For 8 bpp color depths the pattern must begin on a 64 byte
boundary, for 16 bpp color depths the pattern must begin on a 128 byte boundary.

Tofill anareausing the Pattern Fill BitBL T with Transparency, the BitBLT enginerequires
the location of the pattern, the destination rectangle position and size, and the transparency
color. The BitBLT engine also needs to know which pixel from the patternisthefirst pixel
in the destination rectangle (the pattern start phase). Thisallows seamless redrawing of any
part of the screen using the pattern fill.

S1D13806 Programming Notes and Examples
X28B-G-003-04 Issue Date: 01/02/26

Epson Research and Development Page 89
Vancouver Design Center

Example 17: Fill a 100 x 250 rectangle at the screen coordinates x = 10, y = 20 with
the pattern in off-screen memory at offset 10000h using a 640x480 dis-
play at a color depth of 8 bpp. The first pixel (upper left corner) of the
rectangle is the pattern pixel at x = 3, y = 4. Transparent color is blue (as-
sumes LUT index 1).

1. Cadculatethe destination address (upper left corner of destination rectangle), using the
formula:

DestinationAddress = (y x ScreenStride) + (x x BytesPerPixel)
= (20 x 640) + (10 x 1)
=12810
= 320Ah

where:

BytesPerPixel = 1 for 8 bpp

BytesPerPixel = 2 for 16 bpp

ScreenStride = DisplayWidthinPixels x BytesPerPixels = 640 for 8 bpp

Program the BitBL T Destination Start Address Registers. REG[10Ah] is set to 00h,
REG[109h] is set to 32h, and REG[108h] is set to OAh.

2. Calculate the source address. Thisisthe address of the pixd in the pattern that is the
origin of the destination fill area. The pattern begins at offset 1M, but the first pattern
pixel isat x = 3,y = 4. Therefore, an offset within the pattern itself must be calculated.

SourceAddress

= PatternOffset + StartPatternY x 8 x BytesPerPixel + StartPatternX x BytesPerPixel
=IM+(4x8x1)+(3x1)

=1M + 35

= 1048611

=100023h

where:
BytesPerPixel = 1 for 8 bpp
BytesPerPixel =2 for 16 bpp

Program the BitBL T Source Start Address Registers. REG[106h] is set to 10h,
REG[105h] is set to 00h, and REG[104h] is set 23h.

3. Program the BitBLT Width Registersto 100 - 1. REG[111h] is set to 00h and
REG[110h] is set to 63h (99 decimal).

4. Program the BitBLT Height Registersto 250-1. REG[113h] is set to 00h, and
REG[112h] is set to FOh (249 decimal).

5. Program the BitBLT Operation Register to select the Pattern Fill BitBLT with Trans-
parency. REG[103h] is set to 07h.

Programming Notes and Examples S1D13806
Issue Date: 01/02/26 X28B-G-003-04

Page 90

Epson Research and Development
Vancouver Design Center

10.

Program the BitBL T Background Color Registers to select transparent color. This ex-
ample uses blue (LUT index 1) as the transparent color. REG[114h] is set to Olh.

Note that for 16 bpp color depths, REG[115h] and REG[114h] are both required and
programmed directly with the value of the transparent background color. For example,
for full intensity green to be the transparent color in 16 bpp, REG[115h] is set to 07h
and REG[114h] is set to EOh.

Program the BitBLT Color Format Select bit for 8 bpp operations. REG[101h] is set
to 00h.

Program the BitBLT Memory Offset Registers to the ScreenStride in WORDS.

BltMemoryOffset = ScreenStride + 2
=640+ 2
=320
= 140h
REG[10Dh] is set to 01h and REG[10Ch] is set to 40h.

Program the BitBLT Destination/Source Linear Select bits for arectangular BitBLT
(BitBLT Destination Linear Select = 0, BitBL T Source Linear Select = 0).

Start the BitBL T operation. REG[100h] is set to 80h.

Once the BitBLT operation is finished, read one word from offset 0 in the BitBLT
memory area to shutdown the BitBL T engine.

Note
The order of register initialization isirrelevant as long as al relevant registers are pro-
grammed before the BitBL T isinitiated.

S1D13806
X28B-G-003-04

Programming Notes and Examples
Issue Date: 01/02/26

Epson Research and Development Page 91

Vancouver Design Center

10.2.11 Move BitBLT with Color Expansion

The Move BitBLT with Color Expansion takes a monochrome bitmap as the source and
color expandsit into the destination. Color expansion moves all bits in the monochrome
sourceto pixelsin the destination. All bits in the source set to one are expanded into desti-
nation pixels of the selected foreground color. All bitsin the source set to zero are expanded
into pixels of the selected background color.

The Move BitBLT with Color Expansion is used to accelerate text drawing on the screen.
A monochrome bitmap of afont in off-screen memory occupies very little space and takes
advantage of the hardware acceleration. Since the foreground and background colors are
programmable, text of any color can be created.

The Move BitBLT with Color Expansion may move data from one rectangular areato
another, or it may be specified aslinear. The linear configuration may be applied to the
source or destination. Defining the Move BitBLT as linear allows each line of the Move
BitBLT areato be placed directly after the previous line, rather than requiring a complete
row of address space for each line.

Note
The BitBLT ROP Code/Color Expansion Register must be programmed to value 07h.
Therefore, the first word in aline color expansion starts with the most significant bit of
the low or high byte.

Example 18: Color expand a 9 x 16 rectangle using the pattern in off-screen memory
at 10 0000h and move it to the screen coordinates x = 200, y = 20. As-
sume a 640x480 display at a color depth of 16 bpp, Foreground color of
black, and background color of white.

1. Cadculatethe destination and source addresses (upper left corner of the destination and
source rectangles), using the formula.

DestinationAddress = (y x ScreenStride) + (x x BytesPerPixel)
= (20 x (640 x 2)) + (200 x 2)
= 26000
= 6590h

where:

BytesPerPixel = 1 for 8 bpp

BytesPerPixel = 2 for 16 bpp

ScreenStride = DisplayWidthinPixels x BytesPerPixels = 1280 for 16 bpp

SourceAddress =1M
= 100000h

Program the BitBL T Destination Start Address Registers. REG[10Ah] is set to 00h,
REG[109h] is set to 65h, and REG[108h] is set to 90h.

Program the BitBL T Source Start Address Registers. REG[106h] is set to 10h,
REG[105h] is set to 00h, and REG[104h] is set to 00h.

Programming Notes and Examples S1D13806

Issue Date: 01/02/26

X28B-G-003-04

Page 92

Epson Research and Development
Vancouver Design Center

10.

11.

Program the BitBLT Width Registersto 9- 1. REG[111h] is set to 00h and
REG[110h] is set to 08h.

Program the BitBLT Height Registersto 16 - 1. REG[113h] is set to 00h and
REG[112h] is set to OFh.

Program the BitBLT ROP Code/Color Expansion Register. REG[102h] is set to
07h.

Program the BitBLT Operation Register to select the Move BitBL T with Color Ex-
pansion. REG[103h] is set to OBh.

Program the BitBLT Foreground Color Register to select black (in 16 bpp black =
0000h). REG[119h] is set to 00h and REG[118h] is set to O0h.

Program the BitBL T Background Color Register to select white (in 16 bpp white =
FFFFh). REG[115h] is set to FFh and REG[114h] is set to FFh.

Program the BitBLT Color Format Select bit for 16 bpp operations. REG[101h] is set
to 01h.

Program the BitBLT Memory Offset Registers to the ScreenStride in WORDS.

BltMemoryOffset = ScreenStride + 2
=640
= 280h

REG[10DH] is set to 02h and REG[10Ch] is set to 80h.

Program the BitBLT Destination/Source Linear Select bits for arectangular BitBLT
(BitBLT Destination Linear Select = 0, BitBL T Source Linear Select = 0).

Start the BitBL T operation. REG[100h] is set to 80h.

Once the BitBLT operation is finished, read one word from offset 0 in the BitBLT
memory area to shutdown the BitBL T engine.

Note
The order of register initialization isirrelevant as long as al relevant registers are pro-
grammed before the BitBL T isinitiated.

10.2.12 Transparent Move BitBLT with Color Expansion

The Transparent Move BitBL T with Color Expansion isvirtually identical to the Move
BitBLT with Color Expansion. The background color isignored and bitsin the
monochrome source bitmap set to 0 are not color expanded.

S1D13806
X28B-G-003-04

Programming Notes and Examples
Issue Date: 01/02/26

Epson Research and Development Page 93
Vancouver Design Center

10.2.13 Read BitBLT

ThisRead BitBL T increasesthe speed of transferring datafrom the display buffer to system
memory. This BitBLT complements the Write BitBLT and istypically used to save a part
of the display buffer to the system memory. Once the Read BitBL T begins, the BitBLT
engine remains active until all the pixels have been read.

TheBIitBLT enginerequiresthe addressto copy from and the size of the areato copy (width
x height). The BitBLT engine expects to read a certain number of words. For 16 bpp color
depths, the number of wordsis the same as the number of pixels due to the fact that each
pixel isone WORD wide. The number of WORD readsthe BitBL T engine expectsis cal cu-
lated using the following formula.

nNWORDS = nPixds
= BitBLT Width x BitBLT Height

For 8 bpp color depths, the formula must take into consideration that the BitBLT engine
accepts only WORD accesses and each pixel isone BY TE. The BitBL T engine needs to
know whether thefirst pixel of each lineisstored in the low byte or high byte. Thisis deter-
mined by bit 0 of the Destination Start Address Register 0 (REG[108h]). If the Destination
Phase is 1 (bit O of the Destination Start Address Register 0 is set), the first pixel of each
lineis placed in the high byte of the WORD and the contents of the low byte is undefined.
If the Destination Phase is 0, the first pixel is placed in the low byte and the second pixel is
placed in the high byte. Depending on the Destination Phase and the BitBL T Width, the last
WORD in each line may contain only one pixel. It is always in the low byte if more than
one WORD per lineisrequired. The number of WORD reads the BitBLT engine expects
for 8 bpp color depths is shown in the following formula.

NWORDS = ((BLTWidth + 1 + DestinationPhase) + 2) x BLTHeight

Example 19: Read 100 x 20 pixels at the screen coordinates x = 25, y = 38 and save
to system memory. Assume a display of 640x480 at a color depth of 8

bpp.
1. Caculate the source address (upper left corner of the screen BitBL T rectangle), using
the formula
SourceAddress = (y x ScreenStride) + (x x BytesPerPixel)
= (38 x 640) + (25 x 1)
= 24345
= 5F19h
where:

BytesPerPixel = 1 for 8 bpp
BytesPerPixel = 2 for 16 bpp
ScreenStride = DisplayWidthinPixels x BytesPerPixels = 640 for 8 bpp

Program the BitBL T Source Start Address Registers. REG[106h] is set to 00h,
REG[105h] is set to 5Fh, and REG[104h] is set to 19h.

Programming Notes and Examples S1D13806
Issue Date: 01/02/26 X28B-G-003-04

Page 94

Epson Research and Development
Vancouver Design Center

Program the BitBL T Width Registersto 100 - 1. REG[111h] is set to 00h and
REG[110h] is set to 63h (99 decimal).

Program the BitBLT Height Registersto 20 - 1. REG[113h] is set to 00h and
REG[112h] is set to 13h (19 decimal).

Program the Destination Phase in the BitBL T Destination Start Address Register. In
this example, the datais WORD aligned, so the destination phase is 0. REG[108h] is
setto 0.

Program the BitBLT Operation to select the Read BitBLT. REG[103h] is set to 01h.

Program the BitBLT Color Format Select bit for 8 bpp operations. REG[101h] is set
to 00h.

Program the BitBLT Memory Offset Registers to the ScreenStride in WORDS.

BlItMemoryOffset = ScreenStride + 2
=640+ 2
=320
= 140h

REG[10DH] is set to 01h and REG[10Ch] is set to 40h.

Calculate the number of WORDS the BitBL T engine expectsto receive.

nWORDS = ((BLTWidth + 1 + DestinationPhase) + 2) xBLTHeight
=(100+1+0)+2x20
= 1000
= 3E8h

Program the BitBLT Destination/Source Linear Select bits for arectangular BitBLT
(BitBLT Destination Linear Select = 0, BitBL T Source Linear Select = 0).

Start the BitBL T operation and wait for the BitBL T engineto start. REG[100h] is
set to 80h, then wait until REG[100h] bit 7 returnsa 1.

S1D13806
X28B-G-003-04

Programming Notes and Examples
Issue Date: 01/02/26

Epson Research and Development Page 95

Vancouver Design Center

10. Prior toreading all nWORDS from the BitBL T FIFO, confirm the BitBLT FIFO isnot
empty (REG[100h] bit 4 returnsa 1). If the BitBLT FIFO Not Empty Status returns a
1 and the BitBLT FIFO Half Full Status returns a0 then you can read up to 8
WORDS. If the BitBLT FIFO Full Statusreturnsa 1, read up to 16 WORDS. If the
BitBLT FIFO Not Empty Status returns a0 (the FIFO is empty), do not read from the
BitBLT FIFO until it returnsa 1.

The following table summarizes how many words can be read from the BitBL T FIFO.

Table 10-7: Possible BitBLT FIFO Reads

BitBLT Control Register 0 (REG[100h]) Word Reads
FIFO Not Empty Status FIFO Half Full Status FIFO Full Status Available
0 0 0 0 (do not read)
1 0 0 upto8
1 1 0 8
1 1 1 16

11. Oncethe BitBLT operation isfinished, read one word from offset 0 in the BitBLT
memory areato shutdown the BitBLT engine.

Note
The order of register initialization isirrelevant aslong as all relevant registers are pro-
grammed before the BitBL T isinitiated.

10.3 S1D13806 BitBLT Synchronization

A BitBLT operation can only be started if the BitBL T engine is not busy servicing another
BitBLT. Before anew BitBLT operation is started, software must confirm the BitBLT
Active Status bit (REG[100h] bit 7) returns a 0. Software can either test this bit after each
BitBLT operation, or before each BitBLT operation.

Testing the BitBLT Status After

Testing the BitBL T Active Status after starting anew BitBLT issimpler and less proneto
errors.

To test after each BitBL T operation, perform the following.
1. Program and start the BitBL T engine.

2. Wait for the current BitBL T operation to finish -- Poll the BitBLT Active Status bit
(REG[100h] bit) until it returnsaO.

3. Oncethe BitBLT operation isfinished, read one word from offset 0 in the BitBLT
memory areato shutdown the BitBLT engine.

4. Continue the program.

Programming Notes and Examples S1D13806

Issue Date: 01/02/26

X28B-G-003-04

Page 96

Epson Research and Development
Vancouver Design Center

Testing the BitBLT Status Before

Testing the BitBL T Active Status before starting anew BitBLT results in better perfor-
mance, as both CPU and BitBL T engine can be running at the same time. Thisis most
useful for BitBLTsthat are self completing (once started they don’t require any CPU assis-
tance). While the BitBL T engineis busy, the CPU can do other tasks. To test before each
BitBLT operation, perform the following.

1. Wait for the current BitBL T operation to finish -- Poll the BitBLT Active Status bit
(REG[100h] bit 7) until it returnsaO.

2. OncetheBitBLT operation is finished, read one word from offset 0 in the BitBLT
memory areato shutdown the BitBLT engine.

3. Program and start the new BitBLT operation.

4. Continue the program (CPU and BitBLT engine work independently).

However, this approach can pose problems when mixing CPU and BitBL T accessto the
display buffer. For example, if the CPU writes a pixel whilethe BitBLT engineis running
and the CPU writes a pixel beforethe BitBLT finishes, the pixel may be overwritten by the
BitBLT. To avoid this scenario, always assure no BitBLT isin progress before accessing
the display buffer with the CPU, or don’t use the CPU to access display buffer at all.

10.4 S1D13806 BitBLT Known Limitations

The S1D13806 BitBL T engine has the following limitations.
» BitBLT Width must be greater than 0.
» BitBLT Height must be greater than 0.

e TheBitBLT engineisnot SwivelView aware. If BitBLTs are used when SwivelView is
enabled, the horizontal and vertical coordinates are swapped. It may be possible to recal-
culate these coordinates allowing use of some of the BitBLT functions. However the
coordinate transformations required may nullify the benefits of the BitBLT.

* The Pattern Fill with ROP (OCh or 03h) and Transparent Pattern Fill are designed such
that the BitBLT Width must be > 1 for 16 bpp color depths and > 2 for 8 bpp.

» Oneword must be read from the BitBL T area between each BitBL T operation.

10.5 Sample Code

Sample code demonstrating how to program the S1D13806 BitBL T engineis provided in
the file 86sample.zip. Thisfile is available on the internet at www.erd.epson.com.

S1D13806
X28B-G-003-04

Programming Notes and Examples
Issue Date: 01/02/26

Epson Research and Development Page 97
Vancouver Design Center

11 CRT/TV Considerations

The S1D13806 is capable of driving an LCD panel, CRT display, or a TV monitor.
However, only an LCD panel and CRT or an LCD panel and TV can be driven simulta
neoudly. It is not possible to drive both a CRT and TV at the same time.

The horizontal and vertical timing requirements of LCD panels allows for a wide timing
variance. In comparison, a CRT display hasvery strict timing requirements with even a
very small timing variance degrading the displayed image. TV monitors require timings
based on the NTSC or PAL specifications.

The utility 1386¢fg.exe can be used to generate a header file containing the register values
required for CRT/TV or LCD pandl timings. For further information on 1386c¢fg.exe, see
the 1386CFG Users Manual, document number X28B-B-001-xx.

11.1 CRT Considerations

CRT timings are based on the VESA Monitor Timing Specifications. The VESA specifi-
cation details all the parameters of the display and non-display times, aswell as the input
clock required to meet the times. Failing to use correct timings can result in an unsyn-
chronized image on a particular monitor, which can permanently damagethe
monitor. Virtualy all VGA monitors sync if VESA timings are used.

For more information on VESA timings, contact the Video Electronics Standards Associ-
ation on the internet at www.vesa.org.

11.1.1 Generating CRT timings with 1386CFG
1386¢fg.exe will generate correct VESA timings for 640x480 and 800x600 if provided the
correct VESA input clock. The following timings can be generated:
» 640x480 @ 60Hz (Input Clock = 25.175 MHZ2)

640x480 @ 72Hz (Input Clock = 31.500 MHz)

640x480 @ 75Hz (Input Clock = 31.500 MHz)

640x480 @ 85 Hz (Input Clock = 36.000 MHz)

800x600 @ 56 Hz (Input Clock = 36.000 MHz)

800x600 @ 60 Hz (Input Clock = 40.000 MHz)

11.1.2 DAC Output Level Selection

When the CRT is active, the DAC Output Level Select bit (REG[05Bh] bit 3) can be used
to double values output to the DAC. Thiswould normally result in very bright colors on the
display, but if IREF is reduced at the same time the display will remain at its intended
brightness and power consumption is reduced.

Programming Notes and Examples S1D13806
Issue Date: 01/02/26 X28B-G-003-04

Page 98

Epson Research and Development
Vancouver Design Center

11.1.3 Examples

Example 20: Enable the CRT display. Assume the CRT timing registers are already
programmed.

1. Confirmthe TV PAL/NTSC Output Select bit is clear. REG[05Bh] bit O is set to O.
2. Confirmthe CRT and TV displays are disabled. REG[1FCh] bits 2-1 are set to 0.

3. Enablethe CRT. REG[1FCh] isset to 1.

Sample code demonstrating how to enable the CRT display isprovided in thefile 86_crt.c
(part of thefile 86sample.zip). Thisfileisavailable ontheinternet at www.erd.epson.com.

11.2 TV Considerations

TV timings are based on either the NTSC or PAL specifications. The TV display can be
output in either composite video or S-video format.

11.2.1 NTSC Timings

NTSC timings require a 14.318 MHz input clock. With the correct input clock the
following resolutions are supported.

* 640x480
* 696x436
* 752x484

11.2.2 PAL Timings

PAL timingsrequirea17.734 MHz input clock. With the correct input clock the following
resolutions are supported.

* 640x480
» 800x572
» 856x518
* 920x572

S1D13806
X28B-G-003-04

Programming Notes and Examples
Issue Date: 01/02/26

Epson Research and Development Page 99

Vancouver Design Center

11.2.3 TV Filters

The S1D13806 is designed with three filters which improve TV picture quality.
* Flicker Filter.
» Chrominance Filter.

* Luminance Filter.

Each filter isindependent and can be enabled/disabled separately. The TV picture quality
varies depending on the actual picture displayed (static image, moving image, number of
colors etc.) and may be improved using the filters.

Flicker Filter

The Flicker Filter is controlled by the Display Mode Select bits (REG[1FCh] bits 2-0). It
reduces the “flickering” effect seen on interlaced displays caused by sharp vertical image
transitionsthat occur over oneline (e.g. one pixel high lines, edges of window boxes, etc.).
The Flicker Filter may be used to for both composite video and S-video formats.

Note
The CRT/TV PCLK 2X Enable bit (REG[018h] bit 7) must be set to 1 when the Flicker
Filter is enabled.

Chrominance Filter

The Chrominance Filter is controlled by the TV Chrominance Filter Enable bit
(REG[05Bh] bit 5). It adjusts the color of the TV, reducing the “ragged edges’ seen athe
boundaries between sharp color transitions. The Chrominance Filter may improve the TV
picture quality when in composite video format.

Luminance Filter

The Luminance Filter iscontrolled by the TV Luminance Filter Enable bit (REG[05Bh] bit
4). It adjuststhe brightness of the TV, reducing the “ rainbow-like” colors at the boundaries
between sharp brightness transitions. The Luminance Filter may improve the TV picture
quality when in composite video format.

For further information on the TV filters, see the SLD13806 Hardware Functional Specifi-
cation, document number X28B-A-001-xx.

Programming Notes and Examples S1D13806

Issue Date: 01/02/26

X28B-G-003-04

Page 100

Epson Research and Development
Vancouver Design Center

11.2.4 Examples

Example 21: Enable the TV display and set the Flicker Filter. Assume the TV timing
registers are already programmed.

1. Enablethe TV with Flicker Filter enabled. REG[1FCh] is set to 06h.

2. Enablethe CRT/TV PCLK 2X bit (REG[018h] bit 7). REG[018h] bit 7 is set to 1b.

Sample code demonstrating how to enable the TV display is provided in thefile 86_tv.c
(part of thefile 86sample.zip). Thisfileisavailable ontheinternet at www.erd.epson.com.

11.3 Simultaneous Display

The S1D 13806 supports simultaneous display of an LCD panel and CRT or an LCD panel
and TV. Both display images are completely independent. Each display can show separate
areas of the display buffer and display different color depths. There are separate Look-Up
Tables and Hardware Cursors/Ink Layers for both the LCD and CRT/TV. If desired, the

LUTsfor the LCD and CRT/TV may be written to simultaneously (REG[1EOh] hit 0 = 0).

Note
Not all combinations of panel and CRT/TV display resolutions are possible. For further
information, see the S1D13806 Hardware Functional Specification, document number
X28B-A-001-xx.

S1D13806
X28B-G-003-04

Programming Notes and Examples
Issue Date: 01/02/26

Epson Research and Development Page 101
Vancouver Design Center

12 MediaPlug

The S1D13806 is designed with support for MediaPiug. MediaPlug is adigital interface
supporting the Winnov Videum camera. The Videum camera supports simultaneous video
and audio capture of streaming (real-time) and till images. It also supports streaming live
video at speeds near 30 frames per second on fast host systems (i.e. Pentium-2 300MHz or
faster).

12.1 Programming

M ediaPlug and the Winnov Videum cameraare a proprietary design of Winnov. Dueto the
complexity of the digital interface, all software and drivers for the camera are provided by
Winnov. Customersintending to use the MediaPlug interfacein their design should contact
Epson Electronics Americato obtain the latest S1D13806 MediaPlug drivers for testing
purposes.

The MediaPlug interface on the S1D 13806 must be enabled to function correctly. To enable
the MediaPlug interface, CONF7 must be high (1) on therising edge of RESET#. When the
MediaPlug interface is enabled, GP1O12 is controlled by the MediaPlug LCMD
register, and the GP10O12 bitsin both REG[005h] and REG[009h] have no effect. Also
when the MediaPlug interface is enabled, the camera power (VMPEPWR) is controlled by
GPIO12 pin.

The MediaPlug LCMD 16-hit register REG[1000h] contains status bits which can be read
by software. For further information on these status bits, see the S1D13806 Hardware
Functional Specification, document number X28B-A-001-xx.

The MediaPlug I C Revision bits (REG[1000h] bits 11-8) contain the revision of the
interface. The 16-bit value read from REG[1000h] should be masked with OFO0h and
compared with 0300h (the current revision of the interface).

The MediaPlug Cable Detected Status bit (REG[1000h] bit 7) determinesif acamerais
connected to the MediaPlug interface. When this bit returns a 0, a camerais connected.
When thisbit returns a 1, acamerais not connected.

The MediaPlug Power Enable to Remote bit (REG[1000h], bit 1) controls the power to the
remote camera. GPIO12 is controlled by this bit when the MediaPlug interface is enabled.
Writing this bit is necessary only when software needs to control the GPIO12 pin.

Programming Notes and Examples S1D13806
Issue Date: 01/02/26 X28B-G-003-04

Page 102 Epson Research and Development
Vancouver Design Center

12.2 Considerations

Software can determine if the MediaPlug interface is enabled or disabled by reading the
Config Status Register (REG[00Ch]) and masking the data with 80h. If the masked result
equals 80h, the MediaPlug Interfaceis enabled.

The MediaPlug interface requires a source clock between 8MHz and 19MHz to operate
(optimal is 14.318MHz). By default, the MediaPlug software assumes a 14.318MHz
frequency is available on CLKI2. If the frequency of CLKI2 is changed, software should
reprogram the MediaPlug Clock Register (REG[01Ch]) to select a clock source that is
suitable, or program the clock divide bits to obtain a frequency within the correct range.

If the S5U13806B00x evaluation board is used, the clock chip should be programmed to
support avalid clock for the MediaPlug interface. A HAL function is available which
programs the clock chip for the MediaPlug interface.

S1D13806 Programming Notes and Examples
X28B-G-003-04 Issue Date: 01/02/26

Epson Research and Development Page 103

Vancouver Design Center

13 Identifying the S1D13806

The S1D13806 can only be identified once the Memory/Register Select bitissetto 0. The
stepsto identify the S1D13806 are:

1

2
3
4.
5

Set the Memory/Register Select bit to 0 by writing 00h to REG[001h].

Read REG[000h].

The production version of the S1D13806 will return avalue of 1Dh (00011101b).
The product code is 7 (000111b based on bits 7-2).

Therevision code is 1 (01b based on bits 1-0).

Programming Notes and Examples

Issue Date: 01/02/26

S1D13806
X28B-G-003-04

Page 104 Epson Research and Development

Vancouver Design Center

14 Hardware Abstraction Layer (HAL)

The HAL isa processor independent programming library designed to help port applica-
tions and utilities from one S1D13x0x product to another. Epson has provided thislibrary
as aresult of developing test utilities for the S1ID13x0x LCD controller products.

The HAL contains functions which are designed to be consistent between S1D13x0x
products, but as the semiconductor products evolve, so must the HAL; consequently there
are some differences between HAL functions for different S1ID13x0x products.

Note
Asthe S1D13x0x line of products changes, the HAL may change significantly or cease
to be auseful tool. Seiko Epson reserves the right to change the functionality of the
HAL or discontinue its use if no longer required.

14.1 API for 1386HAL

This section is adescription of the HAL library Application Programmers Interface (API).
Updates and revisionsto the HAL may include new functions not included in the following
documentation.

Table 14-1: HAL Functions

Function | Description

Initialization

Registers the S1D13806 parameters with the HAL.

seRegisterDevice seRegisterDevice MUST be the first HAL function called by an application.

selnitReg

Initializes the registers, LUT, and allocates memory for default surfaces.

seHalTerminate

Frees up memory allocated by the HAL before the application exits.

seGetHalVersion

Returns HAL library version information.

seGetld

Identifies the controller by interpreting the revision code register.

General HAL Support:

seGetlnstalledMemorySize

Returns the total size of the display buffer memory.

seGetAvailableMemorySize

Determines the last byte of display memory, before the Dual Panel buffer, available to an
application.

seGetResolution
seGetlLcdResolution
seGetCrtResolution
seGetTvResolution

Retrieve the width and height of the physical display device.

seGetBytesPerScanline
seGetLcdBytesPerScanline
seGetCrtBytesPerScanline
seGetTvBytesPerScanline

Returns the number of bytes in each line of the displayed image. Note that the displayed
image may be larger than the physical size of the LCD/CR/TV.

seSetPowerSaveMode

Sets/resets power save mode.

seGetPowerSaveMode

Returns the current power save mode.

seCheckEndian

Retrieves the “endian-ness” of the host CPU platform.

seGetlLcdOrientation

Returns the SwivelView orientation of the LCD panel.

seDelay

Delays the given number of seconds before returning.

S1D13806
X28B-G-003-04

Programming Notes and Examples
Issue Date: 01/02/26

Epson Research and Development
Vancouver Design Center

Page 105

Table 14-1: HAL Functions (Continued)

Function

Description

seDisplayBlank
seDisplayLcdBlank
seDisplayCrtBlank
seDisplayTvBlank

Blank/unblank the display by disabling/enabling the FIFO.

seDisplayEnable
selLcdDisplayEnable
seCrtDisplayEnable
seTvDisplayEnable

Enable/disable the display.

Advanced HAL Functions:

seBeginHighPriority

Increase thread priority for time critical routines.

seEndHighPriority

Return thread priority to normal.

seSetClock

Set the programmable clock.

Surface Support

seGetSurfaceDisplayMode

Returns the display surface associated with the active surface.

seGetSurfaceSize

Returns the number of bytes allocated to the active surface.

seGetSurfaceLinearAddress

Returns the linear address of the start of display memory for the active surface.

seGetSurfaceOffsetAddress

Returns the offset from the start of display memory to the start of surface memory.

seAllocLcdSurface
seAllocCrtSurface
seAllocTvSurface

Use to manually allocate display buffer memory for a surface.

seFreeSurface

Free any allocated surface memory.

seSetLcdAsActiveSurface
seSetCrtAsActiveSurface
seSetTvAsActiveSurface

Call one of these functions to change the active surface.

Register Access:

seReadRegByte Reads one register using a byte access.
seReadRegWord Reads two registers using a word access.
seReadRegDword Reads four registers using a dword access.
seWriteRegByte Writes one register using a byte access.
seWriteRegWord Writes two registers using a word access.
seWriteRegDword Writes four registers using a dword access.
Memory Access
seReadDisplayByte Reads one byte from display memory.
seReadDisplayWord Reads one word from display memory.
seReadDisplayDword Reads one dword from display memory.
seWriteDisplayBytes Writes one or more bytes to display memory.
seWriteDisplayWords Writes one or more words to display memory.
seWriteDisplayDwords Writes one or more dwords to display memory.
Color Manipulation:
seWriteLutEntry
zgw:igiﬁg&:y Writes one RGB element to the lookup table.
seWriteTvLutEntry

Programming Notes and Examples
Issue Date: 01/02/26

S1D13806
X28B-G-003-04

Page 106

Epson Research and Development
Vancouver Design Center

Table 14-1: HAL Functions (Continued)

Function

Description

seReadLutEntry
seReadLcdLutEntry
seReadCrtLutEntry
seReadTvLutEntry

Reads one RGB element from the lookup table.

seWriteLut
seWriteLcdLut
seWriteCrtLut
seWriteTvLut

Write the entire lookup table.

seReadLut
seReadLcdLut
seReadCrtLut
seReadTvLut

Read the entire lookup table.

seGetBitsPerPixel
seGetlLcdBitsPerPixel
seGetCrtBitsPerPixel
seGetTvBitsPerPixel

Gets the color depth.

seSetBitsPerPixel
seSetLcdBitsPerPixel
seSetCrtBitsPerPixel
seSetTvBitsPerPixel

seSetLcdCrtBitsPerPixel
seSetLcdTvBitsPerPixel

Sets the color depth. In addition to setting the control bits to set the color depth, this
action sets a default lookup table for the selected color depth and allocates display buffer
for the surfaces.

Virtual Display

seVirtInit
selLcdVirtlnit
seCrtVirtlnit
seTvVirtlnit
selLcdCrtVirtlnit
seLcdTvVirtInit

Initialize a surface to hold an image larger than the physical display size. Also required for
SwivelView 90° and 270°.

seVirtPanScroll
selLcdVirtPanScroll
seCrtVirtPanScroll
seTvVirtPanScroll
seLcdCrtVirtPanScroll
seLcdTvVirtPanScroll

Pan (right/left) and Scroll (up/down) the display device over the indicated virtual surface.

Drawing

seSetPixel
seSetLcdPixel
seSetCrtPixel
seSetTvPixel

Set one pixel at the specified (x,y) co-ordinate and color.

seGetPixel
seGetlLcdPixel
seGetCrtPixel
seGetTvPixel

Returns the color of the pixel at the specified (x,y) co-ordinate.

seDrawLine
seDrawLcdLine
seDrawCrtlLine
seDrawTvLine

Draws a line between two endpoints in the specified color

S1D13806
X28B-G-003-04

Programming Notes and Examples
Issue Date: 01/02/26

Epson Research and Development Page 107
Vancouver Design Center

Table 14-1: HAL Functions (Continued)

Function Description
seDrawRect
seDrawl cdRect Draws a rectangle. The rectangle can be outlined or filled.
seDrawCrtRect
seDrawTvRect

seDrawCircle
seDrawLcdCircle
seDrawCrtCircle
seDrawTvCircle

Draws a circle of given radius and color at the specified center point.

seDrawEllipse
seDrawLcdEllipse Draws an ellipse centered on a given point with the specified horizontal and vertical
seDrawCrtEllipse radius.

seDrawTVEllipse

Hardware Cursor

selnitCursor
selnitLcdCursor
selnitCrtCursor
selnitTvCursor

Prepares the hardware cursor for use.

seFreeCursor
seFreelLcdCursor
seFreeCrtCursor
seFreeTvCursor

Releases the memory allocated to the hardware cursor by the cursor init function.

seEnableCursor
seEnableLcdCursor
seEnableCrtCursor
seEnableTvCursor

Enable (show) or disable (hide) the hardware cursor.

seGetCursorLinearAddress
seGetLcdCursorLinearAddress
seGetCrtCursorLinearAddress
seGetTvCursorLinearAddress

Returns the linear address of the start of the cursor.

seGetCursorOffsetAddress
seGetlLcdCursorOffsetAddress
seGetCrtCursorOffsetAddress
seGetTvCursorOffsetAddress

Returns the offset from the start of display memory to the start of the cursor memory.

seMoveCursor
seMovelLcdCursor
seMoveCrtCursor
seMoveTvCursor

Moves the top-left corner of the hardware cursor to the specified (x,y) co-ordinates.

seSetCursorColor
seSetLcdCursorColor Allows the application to set the color values for either of the two changeable elements of
seSetCrtCursorColor the hardware cursor.

seSetTvCursorColor

seSetCursorPixel
seSetLcdCursorPixel
seSetCrtCursorPixel
seSetTvCursorPixel

Set one pixel at the specified (x,y) co-ordinate within the hardware cursor.

seDrawCursorLine
seDrawlLcdCursorLine
seDrawCrtCursorLine
seDrawTvCursorLine

Draws a line between two endpoints within the hardware cursor, in the specified color.

Programming Notes and Examples S1D13806
Issue Date: 01/02/26 X28B-G-003-04

Page 108

Epson Research and Development
Vancouver Design Center

Table 14-1: HAL Functions (Continued)

Function

Description

seDrawCursorRect
seDrawlLcdCursorRect
seDrawCrtCursorRect
seDrawTvCursorRect

Draws a hollow or filled rectangle within the hardware cursor.

Ink Layer

selnitink
selnitLcdInk
selnitCrtink
selnitTvink

Prepares the hardware ink layer for use.

seFreelnk
seFreelLcdink
seFreeCrtink
seFreeTvink

Frees memory allocated to the hardware ink layer.

seEnablelnk
seEnableLcdink
seEnableCrtink
seEnableTvink

Enable (show) or disable (hide) the hardware ink layer.

seGetlnkLinearAddress
seGetlLcdInkLinearAddress
seGetCrtInkLinearAddress
seGetTvinkLinearAddress

Returns the linear address of the start of the hardware ink layer.

seGetlnkOffsetAddress
seGetlLcdInkOffsetAddress
seGetCrtInkOffsetAddress
seGetTvInkOffsetAddress

Returns the offset from the start of display memory to the start of ink layer memory.

seSetinkColor
seSetLcdInkColor
seSetCrtinkColor
seSetTvinkColor

Allows the application to set the color values for either of the two changeable elements of
the ink layer.

seSetlinkPixel
seSetlLcdlnkPixel
seSetCrtlnkPixel
seSetTvinkPixel

Set one pixel at the (x,y) co-ordinate within the ink layer.

seDrawlnkLine
seDrawLcdInkLine
seDrawCrtInkLine
seDrawTvInkLine

Draws a line between two endpoints within the hardware ink layer.

seDrawlInkRect
seDrawLcdInkRect
seDrawCrtInkRect
seDrawTvInkRect

Draws an outlined or solid rectangle within the hardware ink layer.

Register/Display Memory

seGetLinearDisplayAddress

Returns the linear address of the start of physical display memory.

seGetLinearRegAddress

Returns the linear address of the start of S1D13806 control registers.

S1D13806
X28B-G-003-04

Programming Notes and Examples
Issue Date: 01/02/26

Epson Research and Development Page 109

Vancouver Design Center

14.2 Initialization

Initialization functions are normally the first functionsin the HAL library that an appli-
cation calls. These routine allow the application to learn alittle about the controller and to
prepare the HAL library for use.

int seRegisterDevice(const LPHAL_STRUC IpHalinfo)

Description: This function registers the S1D 13806 device parameters with the HAL library. The device
parametersinclude such item as address range, register values, desired frame rate, and
more which are stored in the HAL_STRUCT structure pointed to by IpHallnfo. Addition-
ally this routine allocates system memory as address space for accessing registers and the
display buffer.

Parameters: IpHallnfo A pointer to aHAL_STRUCT structure. This structure
must be filled with appropriate values prior to calling
seRegisterDevice.

Return Value: ERR_OK operation completed with no problems

ERR_UNKNOWN_DEVICE The HAL was unable to locate the S1D13806.
ERR_FAILED The HAL was unable to map S1D13806 display memory
to the host platform.
In addition, on Win32 platforms, the following two error values may be returned:
ERR _PClI DRIVER - The HAL was unable to locate file sed13xx.vxd
NOT_FOUND
ERR_PCI_BRIDGE - The driver file sed13xx.vxd was unable to locate the
ADAPTER_NOT_FOUND PCI bridge adapter board attached to the evaluation board.
Note
seRegisterDevice() MUST be called before any other HAL functions.
Programming Notes and Examples S1D13806

Issue Date: 01/02/26

X28B-G-003-04

Page 110

Epson Research and Development
Vancouver Design Center

int selnitReg(unsigned DisplayMode, unsigned Flags)

Description:

Parameters:

Return Value;

This function initializes the S1D13806 registers, the LUT, assigns default surfaces and
allocates memory accordingly.

DisplayMode Set this parameter according to the type of initialization desired.
Valid valuesfor DisplayMode are:

0 Use the values configured by 1386cfg.exe
LCD Initialize for use with an LCD panel.
CRT Initialize for use with a monitor.
TV Initialize for use witha TV
LCD |CRT Initialize for both LCD panel and monitor.
LCD|TV Initialize for both LCD panel and TV.
Flags Provides additional information about how to perform the initialization.

Valid valuesfor Flags are:

CLEAR_MEM Zero display memory as part of theinitialization
DISP_BLANK Blank the display, for aesthetics, during initialization.

ERR_OK Theinitialization completed with no problems.

ERR_FAILED selnitReg failed to initialize the system correctly.

ERR_NOT_ENOUGH_MEMORY Insufficient display buffer.

ERR_CLKI_NOT_IN_TABLE Could not program CLKI in clock synthesizer because
selected frequency not in table.

ERR_CLKI2 _NOT_IN_TABLE Could not program CLKI2 in clock synthesizer
because selected frequency not in table.

void seGetHalVersion(const char ** pVersion, const char ** pStatus, const char **pRevision)

Description: Retrievesthe HAL library version information. By retrieving and displaying the HAL ver-
sion information along with application version information, it is possible to determine at
a glance whether the latest version of the softwareis being run.
Parameters: pVersion A pointer to the array to receive the HAL version code.
pStatus A pointer to the array to receive the HAL status code
A “B” designates a beta version of the HAL, aNULL indicates the
release version
pRevision A pointer to the array to receive the HAL revision status.
Return Value: The version information is returned as the contents of the pointer arguments. A typical
return might be:
*pVersion == “1.01" (HAL version 1.01)
*pStatus == “B” (BETA release)
*pRevision =="“5" (fifth update of the beta)
S1D13806 Programming Notes and Examples

X28B-G-003-04

Issue Date: 01/02/26

Epson Research and Development Page 111
Vancouver Design Center

int seHalTerminate(void)

Description: Frees up memory allocated by HAL before application exits.
Parameters: none.
Return Value: ERR_OK HAL is now ready for application to exit.
ERR_PCI_DRIVER_NOT_FOUND Could not find PCI driver (Intel Windows platform
only).

ERR_PCI_BRIDGE_ADAPTER_NOT_FOUND Could not find PCI Bridge Adapter
board (Intel Windows platform only).

ERR_FAILED Could not free memory.

int seGetld(int * pld)

Description: Reads the S1D 13806 revision code register to determine the controller product and revi-
sion.

Parameters: pld A pointer to an integer to receive the controller ID. The value returned

isan interpreted version of the controller identification.
For the S1D13806 the return values are:

ID_S1D13806_REVO S1D13806 Test Sample version.
ID_S1D13806_REV1 S1D13806 Production version

ID_UNKNOWN The HAL was unable to identify the controller.
Return Value: ERR_OK The operation completed with no problems
ERR_UNKNOWN_DEVICE Return value when pID is ID_UNKNOWN.

Programming Notes and Examples S1D13806

Issue Date: 01/02/26 X28B-G-003-04

Page 112 Epson Research and Development
Vancouver Design Center

14.2.1 General HAL Support

This category of HAL functions provide several essential services which do not readily
group with other functions.

DWORD seGetlInstalledMemorySize(void)

Description: This function returns the size of the display buffer in bytes.
Parameters: None
Return Value: The return value is the size of the display buffer in bytes (14 0000h for the S1D13806).

DWORD seGetAvailableMemorySize(void)

Description: This function returns an offset to the last byte memory, before the Dual Panel buffer,
accessible to an application.

An application can directly access memory from offset zero to the offset returned by this
function. On most systems the return value will be the last byte of physical display mem-
ory. On systems configured for adual STN panel the return value will account for the pres-
ence of the Dual Panel buffer.

Parameters: None.
Return Value: Thereturn value is an offset to the last byte memory directly accessible to an application.
S1D13806 Programming Notes and Examples

X28B-G-003-04 Issue Date: 01/02/26

Epson Research and Development Page 113
Vancouver Design Center

int seGetResolution(unsigned *Width, unsigned *Height)

void seGetLcdResolution(unsigned *Width, unsigned *Height)
void seGetCrtResolution(unsigned *Width, unsigned *Height)
void seGetTvResolution(unsigned *Width, unsigned *Height)

Description: These functions return the width and height of the physical display device. Virtual dimen-
sions are not accounted for in the return value.

seGetResolution() returns the width and height of the active surface. If there is more than
one display associated with the surface then precedenceis given to the LCD.

seGetL cdResolution() returns the width and height of the LCD panel. The width and
height are adjusted for SwivelView orientation.

seGetCrtResolution() and seGetTvResolution() return the width and height of the display
indicated by the function name. The width and height are always in landscape orientation
for CRT and TV displays.

Parameters: Width A pointer to an unsigned integer which will receive the width, in pixels,
for the indicated surface.
Height A pointer to an unsigned integer which will receive the height, in pixels,
for the indicated surface.
Return Value: seGetResolution() returns one of the following:
ERR_OK Function completed successfully

ERR_FAILED Returned when thereis not an active display surface.

seGetL cdResolution(), seGetCrtResolution(), and seGetTvResol ution() do not return any
value.

unsigned seGetBytesPerScanline(void)
unsigned seGetLcdBytesPerScanline(void)
unsighed seGetTvBytesPerScanline(void)
unsigned seGetCrtBytesPerScanline(void)

Description: These functions return the number of bytes in each line of the displayed image. Note that
the displayed image may be larger than the physical size of the LCD/CRT/TV.

seGetBytesPerScanling() returns the number of bytes per scanline for the current active
surface.

seGetL cdBytesPerScanline(), seGetTvBytesPerScanline(), and seGetCrtBytesPer Scan-
ling() return the number of bytes per scanline for the surface indicated in the function

name.
To work correctly the S1D13806 registers must be initialized prior to calling any of these
routines.

Parameters: None.

Return Value: Thereturnvalueisthe“stride” or number of bytesfrom thefirst byte of one scanlineto the

first byte of the next scanline. This value includes both the displayed and the non-dis-
played bytes on each logical scanline.

Programming Notes and Examples S1D13806
Issue Date: 01/02/26 X28B-G-003-04

Page 114 Epson Research and Development
Vancouver Design Center

For SwivelView 90° and SwivelView 270° modes, the return value is either 1024 (8 bpp)
or 2048 (16 bpp) to reflect the 1024 x 1024 virtual area of the rotated memory.

void seSetPowerSaveMode(BOOL Enable)
Description: This function enables or disables the power save mode.

When power save mode is enabled the S1D13806 reduces power consumption by making
the displays inactive and ignoring memory accesses. Disabling power save mode re-
enabl es the video system to full functionality.

Parameters: Enable Call with Enable set to TRUE to set power save mode.
Call with Enable set to FAL SE to disable power save mode.

Return Value: None.

BOOL seGetPowerSaveMode(void)

Description: seGetPowerSaveM ode() returns the current state of power save mode.
Parameters: None.
Return Value: Thereturn value is TRUE if power save mode is enabled. The return value is FAL SE if

power save mode is not enabled.

int seCheckEndian(BOOL *ReverseBytes)
Description: This function returns the “endian-ness’ of the CPU the application is running on.

Parameters: ReverseBytes A pointer to boolean value to receive the endian-ness of the system. On
return from this function ReverseBytes is FALSE if the CPU islittle
endian (i.e. Intel). ReverseBytes will be TRUE if the CPU is
big-endian (i.e. Motorola)

Return Value: Thereturn value is dways ERR_OK.

unsigned seGetLcdOrientation(void)
Description: This function retrieves the Swivel View orientation of the LCD display.

The SwivelView statusis read directly from the S1D13806 registers. Calling this function
when the LCD display is not initialized will result in an erroneous return value.

Note
Only the LCD interface supports Swivel View. A CRT/TV isaways assumed to bein
LANDSCAPE mode.
Parameters: None.
Return Value: LANDSCAPE Not rotated.

ROTATEQO Display is rotated 90 degrees clockwise.
ROTATE180 Display isrotated 180 degrees clockwise.
ROTATE270 Display isrotated 270 degrees clockwise.

S1D13806 Programming Notes and Examples
X28B-G-003-04 Issue Date: 01/02/26

Epson Research and Development Page 115

Vancouver Design Center

int seDelay(DWORD Seconds)

Description:

Parameters:
Return Value:

Thisfunction, intended for non-Intel platforms, delays for the specified number of seconds
then returns to the calling routine. On several evaluation platformsit was not readily
apparent where to obtain an accurate source of time delays. seDelay() was the result of the
need to delay a specified amount of time on these platforms.

For non-Intel platforms, seDelay works by calculating and counting the number of vertical
non-display periodsin the requested delay time. Thisimplies two conditions for proper
operation:

a) The S1D13806 control registers must be configured to correct values.

b) Either the CRT or LCD display interface must be enabled.

For Intel platforms, seDelay() callsthe C library time functions to delay the desired
amount of time using the system clock.

Seconds The number of secondsto delay for.

ERR_OK Returned by all platforms at the completion of a successful delay.
ERR_FAILED Returned by non-Intel platformsin which either the power save modeis
enabled or none of the displaysis enabled.

void seDisplayBlank(BOOL Blank)
void seDisplayLcdBlank(BOOL Blank)
void seDisplayCrtBlank(BOOL Blank)
void seDisplayTvBlank(BOOL Blank)

Description:

Parameters:

Return Value;

These functions blank the display by disabling the FIFO for the specified surface. Blank-
ing the display is afast convenient means of temporarily shutting down a display device.

For instance, updating the entire display in one write may produce aflashing or tearing
effect. If the display is blanked prior to performing the update, the operation is perceived
to be smoother and cleaner.

seDisplayBlank() will blank the display associated with the current active surface.

seDisplayL cdBlank(), seDisplayCrtBlank(), and seDisplay TvBlank() blank the display for
the surface indicated in the function name.

Blank Call with Blank set to TRUE to blank the display. Call with Blank set to
FALSE to un-blank the display.

None.

Programming Notes and Examples S1D13806

Issue Date: 01/02/26

X28B-G-003-04

Page 116 Epson Research and Development
Vancouver Design Center

void seDisplayEnable(BOOL Enable)
void seLcdDisplayEnable(BOOL Enable)
void seCrtDisplayEnable(BOOL Enable)
void seTvDisplayEnable(BOOL Enable)

Description: These functions enable or disable the selected display device.
seDisplayEnable() enables or disables the display for the active surface.
sel cdDisplayEnable() enables or disablesthe LCD display.

seCrtDisplayEnable() enables or disablesthe CRT display. seCrtDisplayEnable() will dis-
able CRT/TV PCLK 2X clock and as a side effect will disable TV, if the TV was enabled.
In addition, seCrtDisplayEnable(), when enabling the CRT, setsthe TV PAL/NTSC bit to
0 (required for CRT mode).

seTvDisplayEnable() enables or disables the TV display. If the CRT is enabled then
seTvDisplayEnable() disablesit. When seTvDisplayEnableis called, the TV flicker filter
isenabled or disabled based on the values saved by the configuration program.

Parameters: Enable Call with Enable set to TRUE to enable the display device. Call with
Enable set to FAL SE to disable the device.

Return Value: None.

S1D13806 Programming Notes and Examples
X28B-G-003-04 Issue Date: 01/02/26

Epson Research and Development Page 117
Vancouver Design Center

14.2.2 Advanced HAL Functions

The advanced HAL functionsinclude a level of access that most applicationswill never
need to access.

int seBeginHighPriority(void)

Description: Writing and debugging software under the Windows operating system greatly ssmplifies
the developing process for the S1D13806 evaluation system. One issue which impedes
application programming is that of latency. Time critical operations (i.e. performance
measurement) are not guaranteed any set amount of processor time.

This function raises the priority of the thread and virtually eliminates the question of
latency for programs running on a Windows platform.

Note
The application should not leave it’ sthread running in a high priority state for long peri-
ods of time. Assoon asatime critical operation is complete the application should call
seEndHighPriorty().

Parameters: None.

Return Value: The priority nest count which is the number of times seBeginHighPriority() has been
called without a corresponding call to seEndHighPriority().

int seEndHighPriority(void)

Description: This function decreases the priority nest count. When this count reaches zero, the thread
priority of the calling application is set to normal.

After performing some time critical operation the application should call seEndHighPrior-
ity() to return the thread priority to a normal level.

Parameters: None.

Return Value: The priority nest count which is the number of times seBeginHighPriority() has been
called without a corresponding call to seEndHighPriority().

Programming Notes and Examples S1D13806
Issue Date: 01/02/26 X28B-G-003-04

Page 118

Epson Research and Development

Vancouver Design Center

int seSetClock(CLOCKSELECT ClockSelect, FREQINDEX Freqlindex)

Description:

Parameters:

Return Value;

Call seSetClock() to set the clock rate of the programmable clock.

ClockSelect

Freglndex

ERR_OK
ERR_FAILED

Note

The ICD2061A programmable clock chip supports two output clock
signals. ClockSelect chooses which of the two output clocks to adjust.

Valid ClockSelect values for CLKI or CLKI2 (defined in hal.h).

Freglndex is an enumerated constant and determines what the output

frequency should be.

Valid values for Freglndex are:
FREQ_6000 6.000 MHz
FREQ_10000 10.000 MHz
FREQ 14318 14.318 MHz
FREQ 17734 17.734 MHz
FREQ 20000 20.000 MHz
FREQ 24000 24.000 MHz
FREQ 25000 25.000 MHz
FREQ 25175 25.175MHz
FREQ 28318 28.318 MHz
FREQ 30000 30.000 MHz
FREQ 31500 31.500 MHz
FREQ 32000 32.000 MHz
FREQ 33000 33.000 MHz
FREQ 33333 33.333 MHz
FREQ 34000 34.000 MHz
FREQ 35000 35.000 MHz
FREQ 36000 36.000 MHz
FREQ 40000 40.000 MHz
FREQ 49500 49.500 MHz
FREQ 50000 50.000 MHz
FREQ 56250 56.250 MHz
FREQ 65000 65.000 MHz
FREQ 80000 80.000 MHz

The function completed with no problems.

seSetClock failed because ofan invalid ClockSelect or an invalid

frequency index.

The clock synthesizer is not exact in the frequency programming. Consequenty, thereis
some error in the selected frequency. This error is not noticable for LCD and CRT dis-
plays, but for TV an oscillator is recommended over the clock synthesizer. To deal with
this situation, seSetClock, when called with a ClockSelect of CLKI2 and Freglndex of
FREQ_ 17734, causes the HAL will bypass the programmable clock and select the Fea-
ture Clock astheinput clock source. Thisis done with the assumption that the applica-
tion is setting up for TV output and the Feature Clock oscillator will provide a more
stable clock for use with TV. (The feature oscillator must be 17.734 MHz)

S1D13806
X28B-G-003-04

Programming Notes and Examples
Issue Date: 01/02/26

Epson Research and Development Page 119
Vancouver Design Center

14.2.3 Surface Support

The S1D13806 HAL library depends heavily on the concept of surfaces. Through surfaces
the HAL tracks memory requirements of the attached display devices, hardware cursor and
ink layers, and the Dual Panel buffer.

Surfaces allow the HAL to permit or fail function calls which change the geometry of the
S1D13806 display memory. Most HAL functions either allocate surface memory or manip-
ulate a surface that has been alocated.

Thefunctionsin this sections allow the application programmer alittle greater control over
surfaces.

int seGetSurfaceDisplayMode(void)

Description: This function determines the type of display associated with the current active surface.
Parameters: None.
Return Value: Thereturn value indicates the active surface display type. Return valueswill be one of:
LCD The LCD panel is the active surface.
CRT The CRT display is the active surface.
TV The TV isthe active display.

DWORD seGetSurfaceSize(void)

Description: This function returns the number of display memory bytes allocated to the current active
surface. The return value does not account for the size for the hardware cursor or ink layer
which may be associated with the surface.

Parameters: None.
Return Value: Thereturn value is the number of bytes allocated to the current active surface.

Thereturn value can be O if thisfunction is called before initializing and making active a
surface.

DWORD seGetSurfaceLinearAddress(void)

Description: This function returns the linear address of the start of memory for the active surface.
Parameters: None.
Return Value: Thereturn valueisthe linear addressto the start of memory for the active surface. A linear

addressis a 32-bit offset, in CPU address space.

Thereturn value will be NULL if this function is called before a surface has been initial-
ized and made active.

DWORD seGetSurfaceOffsetAddress(void)

Description: This function returns the offset, from the first byte of display memory to thefirst byte of
memory associated with the active display surface.

Programming Notes and Examples S1D13806
Issue Date: 01/02/26 X28B-G-003-04

Page 120

Epson Research and Development
Vancouver Design Center

Parameters:
Return Value;

None.

Thereturn valueis the offset, in bytes, from the start of display memory to the start of the
active surface. An address of 0 indicates the surface startsin thefirst byte of display buffer
memory.

Note
This function also returns O if there is no memory allocated to an active surface. Y ou
must ensure that memory is allocated before calling seGetSurfaceOffsetAddress().

DWORD seAllocLcdSurface(DWORD Size)
DWORD seAllocCrtSurface(DWORD Size)
DWORD seAllocTvSurface(DWORD Size)

Description:

Parameters:
Return Value;

These functions all ocate display buffer memory for a surface. If the surface previously had
memory allocated then that memory isfirst released. Newly allocated memory is not
cleared.

Call seAllocLcdSurface(), seAllocCrtSurface(), or seAllocTvSurface() to allocate the
requested amount of display memory for the indicated surface.

These functions allow an application to bypass the automatic surface allocation which
occurs when functions such as selnitReg() or seSetBitsPerPixel() are called.

Size The size in bytes of the requested memory block.

If the memory allocation succeeds then the return value is the linear address of the allo-
cated memory. If the allocation fails then the return value is 0. A linear address is a 32-hit
offset, in CPU address space.

int seFreeSurface(DWORD LinearAddress)

Description:

Parameters:

Return Value;

This function can be called to free any previously allocated display buffer memory.

This function is intended to complement seAllocL cdSurface(), seAllocCrtSurface(), and
seAllocTvSurface(). seFreeSurface can be used to free memory allocated for the hardware
cursor and ink layer; however, it is recommended that seFreeCursor() or seFreelnk() be
called for these surfaces.

After calling one of these functions, the application must switch the active surface to one
which has memory allocated before calling any drawing functions.

LinearAddress A valid linear address. The linear address is a dword returned to the
application by any surface allocation call.

ERR_OK Function completed successfully.
ERR_FAILED Function failed.

S1D13806
X28B-G-003-04

Programming Notes and Examples
Issue Date: 01/02/26

Epson Research and Development Page 121
Vancouver Design Center

void seSetLcdAsActiveSurface(void)
void seSetCrtAsActiveSurface(void)
void seSetTvAsActiveSurface(void)

Description: These functions set the active surface to the display indicated in the function name.

Before calling one of these surface selection routines, that surface must have been allo-
cated using any of the surface allocation methods.

Parameters: None.
Return Value: None.
Programming Notes and Examples S1D13806

Issue Date: 01/02/26 X28B-G-003-04

Page 122 Epson Research and Development
Vancouver Design Center

14.2.4 Register Access

The Register Access functions provide convenient method of accessing the control
registers of the S1D13806 controller using byte, word or dword widths.

To reduce the overhead of the function call as much as possible, two steps were taken:

» To gain maximum efficiency on all compilersand platforms, byte and word size argu-
ments are passed between the application and the HAL as unsigned integers. This typi-
cally alows a compiler to produce more efficient code for the platform.

* Index alignment for word and dword accesses is not tested. On non-Intel platforms
attempting to access aword or dword on a non-aligned boundary may resultin a
processor trap. It isthe responsibility of the caller to ensure that the requested index
offset is correctly aligned for the target platform.

unsigned seReadRegByte(DWORD Index)

Description: This routine reads the register specified by Index and returns the value.
Parameters: Index Offset, in bytes, to the register to read.
Return Value: The return value is the byte read from the register.

unsigned seReadRegWord(DWORD Index)

Description: This routine read two consecutive registers as aword and returns the value.
Parameters: I ndex Offset to thefirst register to read.
Return Value: The return value is the word read from the S1D13806 registers.

DWORD seReadRegDword(DWORD Index)

Description: This routine reads four consecutive registers as a dword and returns the value.
Parameters: Index Offset to thefirst of the four registersto read.
Return Value: The return value is the dword read from the S1D13806 registers.

void seWriteRegByte(DWORD Index, unsigned Value)

Description: This routine writes Value to the register specified by Index.
Parameters: Index Offset to the register to be written
Value Thevalue, in the least significant byte, to write to the register
Return Value: None
S1D13806 Programming Notes and Examples

X28B-G-003-04 Issue Date: 01/02/26

Epson Research and Development Page 123
Vancouver Design Center

void seWriteRegWord(DWORD Index, unsigned Value)

Description: This routine writes the word contained in Value to the specified index.
Parameters: Index Offset to the register pair to be written.

Vaue The value, in the least significant word, to write to the registers.
Return Value: None.

void seWriteRegDword(DWORD Index, DWORD Value)

Description: This routine writes the value specified to four registers starting at Index.
Parameters: Index Offset to thefirst of four registers to be written to.
Vaue The dword value to be written to the registers.
Return Value: None.
Programming Notes and Examples S1D13806

Issue Date: 01/02/26 X28B-G-003-04

Page 124 Epson Research and Development
Vancouver Design Center

14.2.5 Memory Access

The Memory Access functions provide convenient method of accessing the display
memory on an S1D13806 controller using byte, word or dword widths.

To reduce the overhead of these function calls as much as possible, two steps were taken:

» To gain maximum efficiency on all compilersand platforms, byte and word size argu-
ments are passed between the application and the HAL as unsigned integers. This typi-
cally alows a compiler to produce more efficient code for the platform.

 Offset alignment for word and dword accesses is not tested. On non-Intel platforms
attempting to access aword or dword on a non-aligned boundary may resultin a
processor trap. It isthe responsibility of the caller to ensure that the requested offset is
correctly aligned for the target platform.

» These functions will not swap bytesif the endian of the host cpu differs from the
S1D13806 (the S1D13806 is little-endian).

unsigned seReadDisplayByte(DWORD Offset)

Description: Reads a byte from the display buffer memory at the specified offset and returns the value.
Parameters: Offset Offset, in bytes, from start of the display buffer to the byte to read.
Return Value: The return value, in the least significant byte, isthe byte read from display memory.

unsigned seReadDisplayWord(DWORD Offset)

Description: Reads one word from display buffer memory at the specified offset and returns the val ue.
Parameters: Offset Offset, in bytes, from start of the display buffer to the word to read.
Return Value: The return value, in the least significant word, is the word read from display memory.

DWORD seReadDisplayDword (DWORD Offset)

Description: Reads one dword from display buffer memory at the specified offset and returns the value.
Parameters: Offset Offset, in bytes, from start of the display buffer to the dword to read.
Return Value: The DWORD read from display memory.

void seWriteDisplayBytes(DWORD Offset, unsigned Value, DWORD Count)

Description: Thisroutine writes one or more bytes to the display buffer at the offset specified by Offset.
Parameters: Offset Offset, in bytes, from start of display memory to the first byte to be
written.
Value An unsigned integer containing the byte to be written in the least
significant byte.
Count Number of bytesto write. All byteswill have the same value.
Return Value: None.
S1D13806 Programming Notes and Examples

X28B-G-003-04 Issue Date: 01/02/26

Epson Research and Development Page 125
Vancouver Design Center

void seWriteDisplayWords(DWORD Offset, unsigned Value, DWORD Count)

Description: This routine writes one or more words to display memory starting at the specified offset.
Parameters: Offset Offset, in bytes, from the start of display memory to the first word to
write.
Value An unsigned integer containing theword to written in the least
significant word.
Count Number of words to write. All words will have the same value.
Return Value: None.

void seWriteDisplayDwords(DWORD Offset, DWORD Value, DWORD Count)

Description: This routine writes one or more dwords to display memory starting at the specified offset.
Parameters: Offset Offset, in bytes, from the start of display memory to the first dword to
write.
Value The value to be written to display memory.
Count Number of dwords to write. All dwords will have the same value.
Return Value: None.
Programming Notes and Examples S1D13806

Issue Date: 01/02/26 X28B-G-003-04

Page 126 Epson Research and Development
Vancouver Design Center

14.2.6 Color Manipulation

The functions in the Color Manipulation section deal with altering the color valuesin the
Look-Up Table directly through the accessor functions and indirectly through the color
depth setting functions.

Keep in mind that all lookup table datais contained in the upper nibble of each byte.

void seWriteLutEntry(int Index, BYTE *pRGB)
void seWriteLcdLutEntry(int Index, BYTE *pRGB)
void seWriteCrtLutEntry(int Index, BYTE *pRGB)
void seWriteTvLutEntry(int Index, BYTE *pRGB)

Description: These routines write one lookup table entry to the specified index of the lookup table.

seWriteL utEntry() writes to the specified index of the current active surface. See seSetlL -
cdAsActiveSurface(), seSetCrtAsActiveSurface() and seSetTvAsActiveSurface() for
information about changing the active surface.

seWriteL cdL uteEntry(), seWriteCrtLutEntry() and seWriteTvL utEntry() modify one entry
of the lookup table of the surface indicated in by the function name.

Par ameter: Index Offset to the lookup table entry to be modified (i.e. a 0 will write the
first entry and a 255 will write the last |ookup table entry).

pRGB A pointer to a byte array of data to write to the lookup table. The array
must consist of three bytes; the first byte contains the red value, the
second byte contains the green value and the third byte contains the
blue value.

Return Value; None

S1D13806 Programming Notes and Examples
X28B-G-003-04 Issue Date: 01/02/26

Epson Research and Development Page 127
Vancouver Design Center

void seReadLutEntry(int Index, BYTE *pRGB)
void seReadLcdLutEntry(int Index, BYTE *pRGB)
void seReadCrtLutEntry(int Index, BYTE *pRGB)
void seRead TvLutEntry(int Index, BYTE *pRGB)

Description: These routines read one lookup table entry and return the results in the byte array pointed
to by pRGB.

seReadL utEntry() reads the specified index from the lookup table of the current active sur-
face. See seSetl cdAsActiveSurface(), seSetCrtAsActiveSurface() and seSetTvASActive-
Surface() for information about changing the active surface.

seReadL cdL utEntry(), seReadCrtL utEntry(), and seReadTvL utEntry() read one entry
from the lookup table for the surface indicated by the function name.

Par ameter: Index Offset to the lookup table entry to be read. (i.e. setting index to 2 returns
the value of the third RGB element of the lookup table).
pRGB A pointer to an array to receive the lookup table data. The array must be

at least three bytes long. On return from this function thefirst byte of
the array will contain the red data, the second byte will contain the
green data and the third byte will contain the blue data.

Return Value: None.

void seWriteLut(BYTE *pRGB, int Count)
void seWriteLcdLut(BYTE *pRGB, int Count)
void seWriteCrtLut(BYTE *pRGB, int Count)
void seWriteTvLut(BYTE *pRGB, int Count)

Description: These routines write one or more lookup table entries starting at offset zero.

seWriteL ut() modifies Count entries in the current active surface. See seSetL cdAsActive-
Surface(), seSetCrtAsActiveSurface() and seSetTvASsA ctiveSurface() for information
about changing the active surface.

seWritel cdLut(), seWriteCrtLut(), and seWriteTvL ut() modifies the lookup table for the
surface indicated in the function name.

These routines are intended to allow setting as many lookup table entries as the current
color depth allows.

Par ameter: pRGB A pointer to an array of lookup table entry values to writeto the LUT.
Each lookup table entry must consist of three bytes. The first byte must
contain the red value, the second byte must contain the green value and
the third byte must contain the blue value.

Count The number of lookup table entries to modify.
Return Value: None.
Programming Notes and Examples S1D13806

Issue Date: 01/02/26 X28B-G-003-04

Page 128 Epson Research and Development
Vancouver Design Center

void seReadLut(BYTE *pRGB, int Count)
void seReadLcdLut(BYTE *pRGB, int Count)
void seReadCrtLut(BYTE *pRGB, int Count)
void seRead TvLuUt(BYTE *pRGB, int Count)

Description: This routine reads one or more lookup table entries and returns the result in the array
pointed to by pRGB. The read always begins at the first lookup table entry.

seReadL ut() reads the first Count lookup table entries from the current active surface. See
seSetL cdAsActiveSurface(), seSetCrtAsActiveSurface() and seSetTvAsA ctiveSurface()
for information about changing the active surface.

seReadL cdL ut(), seReadCrtL ut(), and seReadTvL ut() read the first Count entries from the
surface indicated by the function name.

Thisroutine allowsreading all the |lookup table elements used by the current color depthin

one library call.

Parameters: pRGB A pointer to an array of bytes large enough to hold the requested
number of lookup table entries. Each lookup table entry consists of
three bytes; the first byte will contain the red data, the second the green
data and the third the blue data.

Count The number of lookup table entriesto read.

Return Value: None.

DWORD seSetBitsPerPixel(unsigned BitsPerPixel)
DWORD seSetLcdBitsPerPixel(unsigned BitsPerPixel)
DWORD seSetCrtBitsPerPixel(unsigned BitsPerPixel)
DWORD seSetTvBitsPerPixel(unsigned BitsPerPixel)
DWORD seSetLcdCrtBitsPerPixel(unsigned BitsPerPixel)
DWORD seSetLcdTvBitsPerPixel(unsigned BitsPerPixel)

Description: These functions change the color depth of the display and update the appropriate LUT.
Display memory is automatically released and then reall ocated as necessary for the dis-

play size.
seSetBitsPerPixel () changes the bpp mode for the active surface. Memory is reassigned
according to the descriptions for each of the following mode sets.

seSetl cdBitsPerPixel () changes the bpp mode for the panel display. Thisfunction usesthe
current register settings for SwivelView to determine the amount of memory to allocate,
and what starting register addresses are required.

Note
seSetL cdBitsPerPixel() frees CRT/TV memory in order to guarantee the LCD image
starts at the beginning of display buffer memory.

seSetCrtBitsPerPixel () and seSetTvBitsPerPixel() change the bpp mode for the indicated
display device. These functionsignore the rotate90 and rotate180 register bits. Memory is
allocated only for the landscape mode.

S1D13806 Programming Notes and Examples
X28B-G-003-04 Issue Date: 01/02/26

Epson Research and Development Page 129

Vancouver Design Center

IMPORTANT

Parameters:

Return Value;

seSetL cdCrtBitsPerPixel () and seSetL cdTvBitsPerPixel () change the color depth for a sur-
face which combines LCD and CRT/TV. SwivelView 90° or 270° are disabled. If the dis-
play resolution is not the same for the two displays then memory is allocated based on the
larger of the two.

When the LCD color depth is changed, memory allocated for the display buffer and ink
layer/hardware cursorsis freed and the display buffer memory isreassigned. The applica-
tion must redraw the display and re-initialize the cursor/ink and redraw after calling seSet-
BitsPerPixel().

seSetl cdCrtBitsPerPixel (), and seSetL cdTvBitsPerPixel () will free al allocated memory
for al displays and all ink layers/hardware cursors, then allocate memory only for the dis-
play(s) mentioned in the function name. The cursor/ink must be re-initialized and restored
after making one of these cadlls.

If the active surfaceisthe panel then seSetBitsPerPixel () will freeall allocated memory for
all displaysand all ink layers/hardware cursors, then allocate memory ONLY for the active
surface (LCD). If the active surfaceisthe CRT or TV, seSetBitsPerPixel() will free mem-
ory only for the active surface (CRT or TV), and then reallocate memory for this surface as
required.
BitsPerPixel The new color depth. BitsPerPixel can be one of the following:

4, 8, 16.

Thereturn value isthe 32-bit offset to the start of the surface display memory. If thereisan
error, thereturn valueis 0. A linear address is the 32-bit offset, in CPU address space,
where the application can directly read or write display memory.

Thethirty-two bit address must be converted to a segment:offset for use with a 16-bit Intel
platform.

unsigned seGetBitsPerPixel(void)

unsigned seGetLcdBitsPerPixel(void)
unsigned seGetCrtBitsPerPixel(void)
unsighed seGetTvBitsPerPixel(void);

Description: These functions return the current color depth for the associated display surface.
seGetBitsPerPixel () returns the color depth for the currently active surface.
seGetL cdBitsPerPixel (), seGetCrtBitsPerPixel (), and seGetTvBitsPerPixel() return the
color depth for the surface indicated in the function name.

Parameters: None.

Return Value; The color depth of the surface. Thisvalue will be 4, 8, or 16.

Programming Notes and Examples S1D13806

Issue Date: 01/02/26

X28B-G-003-04

Page 130

Epson Research and Development
Vancouver Design Center

14.2.7 Virtual Display

int seVirtinit(OWORD Width, DWORD Height)

int seLcdVirtInit(DWORD Width, DWORD Height)
int seCrtVirtinit(DWORD Width, DWORD Height)

int seTvVirtinit(DWORD Width, DWORD Height)

int seLcdCrtVirtlnit(DWORD Width, DWORD Height)
int seLcdTvVirtInit(DWORD Width, DWORD Height)

Description:

Parameters:

These functions prepare the S1D13806 to display avirtual image.

“Virtual Image” describes the condition where the image contained in display memory is
larger than the physical display. In this situation the physical display is used as a window
into the larger display memory area (display surface). Panning (right/left) and scrolling
(up/down) are used to move the display in order to view the entire image a portion at a
time.

seVirtlnit() prepares the current active surface for avirtual image display. Memory isallo-
cated based on width, height and the current color depth.

sel_cdVirtlnit() initializes and allocates memory for the LCD based on width and height
and color depth. If the panel surface is rotated 90 or 270 degrees then the height is set to
1024 lines.

seCrtVirtlnit() and seTvVirtlnit() initialize and allocate memory for the given display
based on current width and height and color depth.

selcdCrtVirtlnit and seLcdTvVirtlnit initialize and allocate memory for a surface which
combines both LCD and CRT/TV. Memory is allocated based on the requirements of the
larger of the two surfaces (if different). If the panel surfaceis rotated 90 or 270 degrees
then the height is set to 1024 lines.

Memory previously allocated for this surfaceis released then reallocated to the larger size.

Note
seL cdVirtlnit() frees CRT/TV memory in order to guarantee the LCD image starts at the
beginning of the display buffer.

Width The desired virtual width of the display in pixels (in landscape
orientation).

Width must be a multiple of the number of pixels contained in one word
of display memory. At 16 bpp Width may be any value. At 8

bpp Width must be a multiple of two and at 4 bpp

Width must be a multiple of four.

Height The desired virtual height of the display in pixels (in landscape
orientation).

The HAL performs internal memory management to ensure that al
display surfaces and cursor/ink layer have sufficient memory for
operation. The Height parameter is required so the HAL can determine
the amount of memory the application requires for the virtual image.

S1D13806
X28B-G-003-04

Programming Notes and Examples
Issue Date: 01/02/26

Epson Research and Development Page 131
Vancouver Design Center

Return Value: ERR_OK The function completed successfully.

ERR_HAL_BAD ARG The requested virtual dimensions are smaller than
the physical display size.

ERR_NOT_ENOUGH_MEMORY Thereisinsufficient free display memory to set the
regquested virtual display size.

void seVirtPanScroll(DWORD x, DWORD vy)

void seLcdVirtPanScroll(DWORD x, DWORD vy)

void seCrtVirtPanScroll(DWORD x, DWORD vy)

void seTvVirtPanScroll(DWORD x, DWORD vy)

void seLcdCrtVirtPanScroll(DWORD x, DWORD y)

void seLcdTvVirtPanScroll(DWORD x, DWORD y)

Description: When displaying a virtual image the physical display is smaller than the virtual image
contained in display memory. In order to view the entire image, the display istreated asa
window into the virtual image.

These functions allow an application to pan (right and left) and scroll (up and down) the
display over the virtual image.

seVirtPanScroll () will pan and scroll the current active surface.

selcdVirtPanScroll(), seCrtVirtPanScroll(), seTvVirtPanScroll(), sel cdCrtVirtPan-
Scroll(), and seL.cdTvVirtPanScroll() will pan and scroll the surface indicated in the func-

tion name.
Parameters: X The new x offset, in pixels, of the upper |eft corner of the display.

y The new y offset, in pixels, of the upper |eft corner of the display.
Return Value: None.
Programming Notes and Examples S1D13806

Issue Date: 01/02/26 X28B-G-003-04

Page 132 Epson Research and Development
Vancouver Design Center

14.2.8 Drawing

Functionsin this category perform primitive drawing on the specified display surface.
Supported drawing primitive include pixels, lines, rectangles, ellipses and circles.

void seSetPixel(long x, longy, DWORD Color)

void seSetLcdPixel(long x, longy, DWORD Color)
void seSetCrtPixel(long x, longy, DWORD Color)
void seSetTvPixel(long x, long y, DWORD Color)

Description: These routines set a pixel at the location x,y with the specified color.

Use seSetPixel () to set one pixel on the current active surface. See seSetl cdA sActiveSur-
face(), seSetCrtAsA ctiveSurface() and seSetTvAsA ctiveSurface() for information about
changing the active surface.

Use seSetl cdPixel (), seSetCrtPixel (), and seSetTvPixel () to set one pixel on the surface
indicated in the function name.

Parameters: X The X co-ordinate, in pixels, of the pixel to set.
y TheY co-ordinate, in pixels, of the pixel to set.
Color Specifies the color to draw the pixel with. Color is interpreted

differently at different color depths.

At 4 and 8 bpp, display colors are derived from the lookup table
values. Theleast significant byte of Color forms an index into the
lookup table.

At 16 bpp the lookup table is bypassed and each word of

display memory forms the color to display. In this mode the least
significant word describes the color to draw the pixel with in 5-6-5
RGB format.

Return Value: None.

S1D13806 Programming Notes and Examples
X28B-G-003-04 Issue Date: 01/02/26

Epson Research and Development Page 133

Vancouver Design Center

DWORD seGetPixel(long x, long y)
DWORD seGetLcdPixel(long x, long y)
DWORD seGetCrtPixel(long x, long y)
DWORD seGetTvPixel(long x, long y)

Description: Returns the pixel color at the specified display location.
Use seGetPixel() to read the pixel color at the specified x,y co-ordinates on the current
active surface. See seSetL cdAsActiveSurface(), seSetCrtAsActiveSurface() and
seSetTvAsActiveSurface() for information about changing the active surface.
Use seGetLcdPixel(), seGetCrtPixel (), and seGetTvPixel() to read the pixel color at the
specified x,y co-ordinate on the display surface referenced in the function name.

Parameters: X The X co-ordinate, in pixels, of the pixel to read
y TheY co-ordinate, in pixels, of the pixel to read

Return Value: Thereturn value is a dword describing the color read at the x,y co-ordinate. Color isinter-
preted differently at different color depths.
At 4 and 8 bpp, display colors are derived from the lookup table values. Thereturn valueis
an index into the lookup table. The red, green and blue components of the color can be
determined by reading the lookup table values at the returned index.
At 16 bpp the lookup table is bypassed and each word of display memory form the color to
display. In this mode the least significant word of the return value describes the color asa
5-6-5 RGB value.

Programming Notes and Examples S1D13806

Issue Date: 01/02/26

X28B-G-003-04

Page 134

Epson Research and Development
Vancouver Design Center

void seDrawLine(long x1, long y1, long x2, long y2, DWORD Color)
void seDrawlLcdLine(long x1, long y1, long x2, long y2, DWORD Color)
void seDrawCrtLine(long x1, long y1, long x2, long y2, DWORD Color)
void seDrawTvLine(long x1, long y1, long x2, long y2, DWORD Color)

Description: These functions draw aline between two pointsin the specified color.

Use seDrawLing() to draw aline on the current active surface. See seSetlL cdAsA ctiveSur-
face(), seSetCrtAsActiveSurface() and seSetTvAsActiveSurface() for information about
changing the active surface.

Use seDrawL cdLine(), seDrawCrtLing(), and seDrawTvLine() to draw aline on the sur-
face referenced by the function name

Parameters: x1

yl

X2

y2

Color

Return Value; None.

The X co-ordinate, in pixels, of thefirst endpoint of the lineto be
drawn.

TheY co-ordinate, in pixels, of the first endpoint of the line to be
drawn.

The X co-ordinate, in pixels, of the second endpoint of the line to be
drawn.

TheY co-ordinate, in pixels, of the second endpoint of the line to be
drawn.

Specifies the color to draw the line with. Color isinterpreted differently
at different color depths.

At 4 and 8 bpp, display colors are derived from the lookup table
values. Theleast significant byte of Color is an index into the lookup
table.

At 16 bpp the lookup table is bypassed and each word of

display memory forms the color to display. In this mode the least
significant word describes the color to draw the line with in 5-6-5 RGB
format.

S1D13806
X28B-G-003-04

Programming Notes and Examples
Issue Date: 01/02/26

Epson Research and Development
Vancouver Design Center

Page 135

void seDrawRect(long x1, long y1, long x2, long y2, DWORD Color, BOOL SolidFill)
void seDrawlLcdRect(long x1, long y1, long x2, long y2, DWORD Color, BOOL SolidFill)
void seDrawCrtRect(long x1, long y1, long x2, long y2, DWORD Color, BOOL SolidFill)
void seDrawTvRect(long x1, long y1, long x2, long y2, DWORD Color, BOOL SolidFill)

Description: These routines draw arectangle on the screen in the specified color. Therectangleis
bounded on the upper |eft by the co-ordinate (x1,y1) and on the lower right by the co-ordi-
nate (x2,y2). The SolidFill parameter allows the programmer to select whether to fill the
interior of the rectangle or to only draw the border.

Use seDrawRect() to draw a rectangle on the current active display surface. See seSetl -
cdAsActiveSurface(), seSetCrtAsActiveSurface() and seSetTvAsActiveSurface() for
information about changing the active surface.

Use seDrawL cdRect(), seDrawCrtRect(), and seDrawTvRect() to draw arectangle on the
display surface indicated by the function name.

Parameters: x1

yl
X2

y2
Color

SolidFill

Return Value; None

The X co-ordinate, in pixels, of the upper left corner of the rectangle.
The Y co-ordinate, in pixels, of the upper left corner of the rectangle.
The X co-ordinate, in pixels, of the lower right corner of the rectangle.
TheY co-ordinate, in pixels, of the lower right corner of the rectangle.

Specifies the color to draw the line with. Color isinterpreted differently
at different color depths.

At 4 and 8 bpp, display colors are derived from the lookup table
values. The least significant byte of Color is an index into the lookup
table.

At 16 bpp the lookup table is bypassed and each word of

display memory formsthe color to display. In this mode the least
significant word describes the color to draw the line with in 5-6-5 RGB
format.

A boolean value specifying whether to fill theinterior of the rectangle.

Set to FAL SE to draw only the rectangle border. Set to TRUE
to instruct this routine tofill the interior of the rectangle.

Programming Notes and Examples
Issue Date: 01/02/26

S1D13806
X28B-G-003-04

Page 136 Epson Research and Development
Vancouver Design Center

void seDrawCircle(long xCenter, long yCenter, long Radius, DWORD Color)
void seDrawlLcdCircle(long xCenter, long yCenter, long Radius, DWORD Color)
void seDrawCrtCircle(long xCenter, long yCenter, long Radius, DWORD Color)
void seDrawTvCircle(long xCenter, long yCenter, long Radius, DWORD Color)

Description: These routines draw a circle on the screen in the specified color. The circle is centered at
the co-ordinate (x,y) and is drawn with the specified radius and Color. Circles cannot be
solid filled.

Use seDrawCircle() to draw the circle on the current active display surface. See seSetl -
cdAsActiveSurface(), seSetCrtAsActiveSurface() and seSetTvAsActiveSurface() for
information about changing the active surface.

Use seDrawL cdCircle(), seDrawCrtCircle(), seDrawTvCircle() draw the circle on the dis-
play surface indicated by the function name

Parameters: X The X co-ordinate, in pixels, of the center of the circle.
y TheY co-ordinate, in pixels, of the center of thecircle.
Radius Specifiesthe radius of the circle in pixels.
Color Specifying the color to draw the circle. Color isinterpreted

differently at different color depths.

At 4 and 8 bpp display colors are derived from the lookup table
values. Theleast significant byte of Color is an index into the lookup
table.

At 16 bpp the lookup table is bypassed and each word of

display memory forms the color to display. In this mode the least
significant word describes the color to draw the circlewith in 5-6-5
RGB format.

Return Value: None.

S1D13806 Programming Notes and Examples
X28B-G-003-04 Issue Date: 01/02/26

Epson Research and Development
Vancouver Design Center

Page 137

void seDrawEllipse(long xc, long yc, long xr, long yr, DWORD Color)
void seDrawLcdEllipse(long xc, long yc, long xr, long yr, DWORD Color)
void seDrawCrtEllipse(long xc, long yc, long xr, long yr, DWORD Color)
void seDrawTvEllipse(long xc, long yc, long xr, long yr, DWORD Color)

Description: These routines draw an ellipse on the screen in the specified color. The circleis centered at
the co-ordinate (x,y) and is drawn in the specified color with the indicated radius for the x
and y axis. Ellipses cannot be solid filled.

Use seDrawEllipse() to draw the €ellipse on the current active display surface. See seSetL -
cdAsActiveSurface(), seSetCrtAsActiveSurface() and seSetTvAsActiveSurface() for
information about changing the active surface.

Use seDrawL cdEllipse(), seDrawCrtEllipse(), seDrawTvEllipse() draw the ellipse on the
display surface indicated by the function name.

Par ameters: XC
yc
Xr
yr
Color

Return Value: None.

The X co-ordinate, in pixels, of the center of the dlipse.
The Y co-ordinate, in pixels, of the center of the ellipse.
A long integer specifying the X radius of the ellipse, in pixels.
A long integer specifying the Y radius of the ellipse, in pixels.

A dword specifying the color to draw the ellipse. Color is interpreted
differently at different color depths.

At 4 and 8 bpp display colors are derived from the lookup table
values. The least significant byte of Color isanindex into the lookup
table.

At 16 bpp the lookup table is bypassed and each word of

display memory formsthe color to display. In this mode the least
significant word describes the color to draw the circle within 5-6-5
RGB format.

Programming Notes and Examples
Issue Date: 01/02/26

S1D13806
X28B-G-003-04

Page 138

Epson Research and Development
Vancouver Design Center

14.2.9 Hardware Cursor

Theroutinesin this section support the hardware cursor. Most of the callslook similar to
normal drawing calls (i.e. seDrawCursorLing()); however, these calls remove the
programmer from having to know the particulars of the cursor memory location, layout and
whether SwivelView is enabled.

The S1D13806 uses the same hardware for both hardware cursor and ink layer which
means that only the cursor or the ink layer can be active at any given time. The difference
between the hardware cursor and the ink layer isthat in cursor modetheimageisa
maximum of 64x64 pixels and can be moved around the display whileinink layer mode
theimageisaslarge asthe physical size of the display and isfixed in position. Both the ink
layer and hardware cursor have the same number of colors and handle these colors identi-
cally.

Note
The hardware cursor and ink layer do not support Swivel View modes. When drawing
images, the SwivelView modeisignored and the hardware cursor and ink layer drawing
functions alwasy use landscape mode. All other functions, such as the cursor movement
functions, perform the necessary trandation to take SwivelView modes into account.

DWORD selnitCursor(void)
DWORD selnitLcdCursor(void)
DWORD selnitCrtCursor(void)
DWORD selnitTvCursor(void)

Description:

Parameters:

Return Value:

These functions allocate cursor memory, fill the cursor image with atransparent block,
and enable the cursor. If memory was previoudy allocated for the cursor, thismemory is
first released.

The S1D13806 supports two independent hardware cursors, one on a panel surface and
one on the CRT/TV surface.

Use selnitCursor() to initialize the cursor for the active surface.

Use selnitL.cdCursor(), selnitCrtCursor(), and selnitTvCursor() initialize the cursor on the
display surface indicated in the function name.

None.

The return value is the thirty-two bit offset to the start of the hardware cursor memory. If
thereisan error thereturn valueisO.

S1D13806
X28B-G-003-04

Programming Notes and Examples
Issue Date: 01/02/26

Epson Research and Development Page 139
Vancouver Design Center

void seFreeCursor(void)
void seFreeLcdCursor(void)
void seFreeCrtCursor(void)
void seFreeTvCursor(void)

Description: These functions release memory allocated to the hardware cursor by selnitCursor() func-
tions.

Use seFreeCursor() to free the hardware cursor memory for the current active surface.

Use sefFreelcdCursor(), seFreeCrtCursor(), and seFreeTvCursor() to free the resources
associated with the surface indicated by the function name.

Parameters: None.
Return Value; None.

void seEnableCursor(int Enable)
void seEnableLcdCursor(int Enable)
void seEnableCrtCursor(int Enable)
void seEnableTvCursor(int Enable)

Description: These functions enable or disable the hardware cursor. When enabled the cursor will be
visible on the display surface. When disabled the cursor will not be displayed.

Call seEnableCursor() to enable/disable the hardware cursor of the active surface.

Call seEnablel cdCursor(), seEnableCrtCursor(), and seEnableTvCursor() to enable/dis-
able the hardware cursor for the surface indicated by the function name.

Recall that the CRT and TV share the same cursor. Enabling/disabling the cursor for one
device will affect the other display as well.

Parameters: Enable A flag indicating whether to enable or disable the hardware cursor.

Call with Enable set to FAL SE to disable the hardware cursor for
the surface. Call with Enable set to TRUE to enable the
hardware cursor for the device.

Return Value: None.

Programming Notes and Examples S1D13806
Issue Date: 01/02/26 X28B-G-003-04

Page 140 Epson Research and Development
Vancouver Design Center

DWORD seGetCursorLinearAddress(void)
DWORD seGetLcdCursorLinearAddress(void)
DWORD seGetCrtCursorLinearAddress(void)
DWORD seGetTvCursorLinearAddress(void)

Description: These routines return the linear address for the hardware cursor through which the applica-
tion can directly access the cursor memory.

Call seGetCursorLinearAddress() to retrieve the address of the hardware cursor associated
with the current active surface.

Call seGetlLcdCursorLinearAddress(), seGetCrtCursorLinearAddress(), or seGetTvCur-
sorLinearAddress() to retrieve the address of the hardware cursor associated with the dis-
play surfaceindicated by the function name.

Parameters: None.

Return Value: Thereturn value is the linear address of the hardware cursor. A linear addressis the 32 bit
offset in CPU address space where the application can directly read or write the hardware
Cursor.

DWORD seGetCursorOffsetAddress(void)
DWORD seGetLcdCursorOffsetAddress(void)
DWORD seGetCrtCursorOffsetAddress(void)
DWORD seGetTvCursorOffsetAddress(void)

Description: These routines return the offset from the start of display memory to the start of the hard-
ware cursor. Using this offset, the application can use HAL API calls such as seSetWrite-
DisplayBytes() to access the hardware cursor image.

Call seGetCursorOffsetAddress() to get the offset to the hardware cursor associated with
the current active surface.

Call seGetL cdCursorOffsetAddress(), seGetCrtCursorOffsetAddress(), and seGetTvCur-
sorOffsetAddress() to retrieve the offset to the hardware cursor for the surface indicated in
the function name.

Parameters: None.

Return Value: Thereturn valueis the offset, in bytes, from the start of display memory to the start of the
hardware cursor.

S1D13806 Programming Notes and Examples

X28B-G-003-04 Issue Date: 01/02/26

Epson Research and Development Page 141
Vancouver Design Center

void seMoveCursor(long x, long y)
void seMovelLcdCursor(long x, long y)
void seMoveCrtCursor(long x, long y)
void seMoveTvCursor(long x, long y)

Description: These routines move where the hardware cursor is shown on the display surface.
Call seMoveCursor() to move the hardware cursor on the current active surface.

Call seMovel cdCursor(), seMoveCrtCursor(), and seMoveTvCursor() to move the hard-
ware cursor associated with the surface indicated in the function name.

These functions support all SwivelView modes.

Par ameter: X The desired display surface X co-ordinate, in pixels, of the upper left
corner of the cursor. X can range from -63 to the width of the display.

y The desired display surface Y co-ordinate, in pixels, of the upper left
corner of the cursor. Y can range from -63 to the height of the display.

Return Value: None.

void seSetCursorColor(int Index, DWORD Color)
void seSetLcdCursorColor(int Index, DWORD Color)
void seSetCrtCursorColor(int Index, DWORD Color)
void seSetTvCursorColor(int Index, DWORD Color)

Description: These routines allow the user to set either of the two user definable colors.

The hardware cursor can be thought of as a four color image. Two of the colors cannot be
changed. Displaying these two colorsin a cursor image will aways result in transparent
and inverse video being displayed.

The remaining two colors can be changed.

Call seSetCursorColor() to change the cursor colors for the current active surface.

Call seSetL cdCursorColor(), seSetCrtCursorColor(), or seSetTvCursorColor() to change
the color for the surface associated with the function name.

Note
The hardware cursor and ink layer use the same color registers. Consequently, the cursor
color functions have exactly the same effect on the ink layer color functions.

Parameters: Index Specifies which of the two application changeable colors this operation
isto affect.
Lega values for Index are 0 and 1.
Color The new color to set as the hardware cursor color.

The color values in the dword are arranged as follows:
XXXX XXXX XXXR RRRR xxGG GGGG xxxB BBB

Where x isdon’t care (set to 0), R isfive bits of red intensity, Gissix
bits of green intensity and B isfive bits of blue intensity.

Return Value: None.

Programming Notes and Examples S1D13806
Issue Date: 01/02/26 X28B-G-003-04

Page 142 Epson Research and Development
Vancouver Design Center

void seSetCursorPixel(long x, longy, DWORD Color)
void seSetLcdCursorPixel(long x, long y, DWORD Color)
void seSetCrtCursorPixel(long x, long y, DWORD Color)
void seSetTvCursorPixel(long x, long y, DWORD Color)

Description: These functions are intended for drawing in the hardware cursor area apixel at atime.

Call seSetCursorPixel() to set apixel in the cursor associated with the current active sur-
face.

Call seSetlcdCursorPixel (), seSetCrtCursorPixel (), and seSetTvCursorPixel () to set pixels
in the cursor associated with the display surface indicated in the function name.

Note
SwivelView modes are ignored in these functions. Landscape orientation is used for
(x,y) co-ordinates.

Parameters: X The X co-ordinate of the cursor, in pixels, at which to set the pixel
color.
Valid values for x range from 0 to 63.

y TheY co-ordinate of the cursor, in pixels, at which to set the pixel
color.
Valid valuesfor y range from O to 63.

Color Specifies which of the four cursor colors to set the pixel ta Valid values
for Color are:

0 - to set the pixel to the solid color O

1 - to set the pixd to the solid color 1

2 - to set the pixel to the transparent color
3 - to set the pixel to the inverted color

Return Value; None.

S1D13806 Programming Notes and Examples
X28B-G-003-04 Issue Date: 01/02/26

Epson Research and Development Page 143
Vancouver Design Center

void seDrawCursorLine(long x1, long y1, long x2, long y2, DWORD Color)
void seDrawlLcdCursorLine(long x1, long y1, long x2, long y2, DWORD Color)
void seDrawCrtCursorLine(long x1, long y1, long x2, long y2, DWORD Color)
void seDrawTvCursorLine(long x1, long y1, long x2, long y2, DWORD Color)

Description: These routines assist in defining the cursor shape by drawing aline in the hardware cursor
between the specified points.

Call seDrawCursorLine() to draw aline in the hardware cursor image associated with the
current active surface.

Call seDrawL cdCursorLine(), seDrawCrtCursorLine(), or seDrawTvCursorLing() to draw
aline in the hardware cursor image associated with the display surface indicated in the
function name.

Note
SwivelView modes are ignored in these functions. Landscape orientation is used for al
co-ordinates.
Parameter: x1 Specifies the X co-ordinate of the first endpoint of the line measured in
pixels from the left edge of the cursor image.
yl Specifiesthe Y co-ordinate of the first endpoint of the line measured in
pixels from the top edge of the cursor image.
X2 Specifiesthe X co-ordinate of the second endpoint of the line measured
in pixels from the left edge of the cursor image.
y2 Specifiesthe Y co-ordinate of the second endpoint of the line measured
in pixels from the top edge of the cursor image.
Color Specifies which of the four cursor colorsto draw the line with. Valid
vaues for Color are:
0 - todraw the linein solid color O
1-todraw thelinein solid color 1
2 - to draw the line in the transparent color
3 - to draw the linein the inverted color
Return Value: None.
Programming Notes and Examples S1D13806

Issue Date: 01/02/26 X28B-G-003-04

Page 144

Epson Research and Development
Vancouver Design Center

void seDrawCursorRect(long x1, long y1, long x2, long y2, DWORD color, BOOL SolidFlll)
void seDrawlLcdCursorRect(long x1, long y1, long x2, long y2, DWORD color, BOOL SolidFill)
void seDrawCrtCursorRect(long x1, long y1, long x2, long y2, DWORD color, BOOL SolidFill)
void seDrawTvCursorRect(long x1, long y1, long x2, long y2, DWORD color, BOOL SolidFill)

Description: These routines draw rectangles on the hardware cursor surface. The rectangle may be
drawn as just aborder or as a solid filled area.

Call seDrawCursorRect() to draw arectangle in the hardware cursor image associated
with the current active surface.

Call seDrawL cdCursorRect(), seDrawCrtCursorRect(), or seDrawTvCursorRect() to draw
arectanglein the hardware cursor image associated with the display surface indicated by
the function name.

Parameter: x1

yl

X2

y2

Color

SolidFill

Return Value: None.

The X co-ordinate for the top left corner of the rectangle measured in
pixels from the left edge of the cursor image.

TheY co-ordinate for the top left corner of the rectangle measured in
pixels from the top of the cursor image.

The X co-ordinate for the bottom right corner of the rectangle measured
in pixels from the left edge of the cursor image.

TheY co-ordinate for the bottom right corner of the rectangle measured
in pixels from the top edge of the cursor image.

Specifieswhich of the four cursor colorsto draw the line with Valid
valuesfor Color are:

0 - to draw therectanglein solid color O

1 - to draw the rectangle in solid color 1

2 - to draw the rectangle to the transparent color
3 - to draw the rectangle in the inverted color

Flags whether to fill the rectangle or to only draw the border.

Set SolidFill to FAL SE to draw only the outline of the rectangle.
Set SolidFill to TRUE tofill the interior of the rectangle.

S1D13806
X28B-G-003-04

Programming Notes and Examples
Issue Date: 01/02/26

Epson Research and Development Page 145

Vancouver Design Center

14.2.10 Ink Layer

The functionsin this section support the hardware ink layer. These functions are nearly
identical to the routines to control the hardware cursor.

The S1D13806 uses the same hardware for both hardware cursor and ink layer, which
means that only the cursor or the ink layer can be active at any given time. The difference
between the hardware cursor and the ink layer isthat in cursor mode, theimage isa
maximum of 64x64 pixels and can be moved around the display whileinink layer mode
theimageisaslarge asthe physical size of thedisplay and isfixed in position. Both theink
layer and hardware cursor have the same number of colors and handle these colorsidenti-
cally.

Note
The hardware cursor and ink layer do not support SwivelView modes. When drawing
images, the SwivelView mode isignored and the hardware cursor and ink layer drawing
functions alwasy use landscape mode. All other functions, such as the cursor movement
functions, perform the necessary translation to take SwivelView modes into account.

DWORD selnitink(void)
DWORD selnitLcdInk(void)
DWORD selnitCrtink(void)
DWORD selnitTvink(void)

Description: These functions initialize theink layer for use. Theinitialization includes: allocating ink
layer memory, filling the ink layer image with atransparent color, and enabling the ink
layer.

If memory was previously allocated for the ink layer or a hardware cursor on the surface
then this memory isfirst released.

Call selnitink() to initialize the ink layer for the current active surface.

Call selnitLcdInk(), selnitCrtink(), and selnitTvink() to initialize the ink layer for the sur-
face indicated in the display name.

Parameters: None.

Return Value: Thereturn valueis the thirty-two bit offset in CPU address space to the start of the ink
layer memory. If thereis an error the return value is 0.

Programming Notes and Examples S1D13806

Issue Date: 01/02/26

X28B-G-003-04

Page 146 Epson Research and Development
Vancouver Design Center

void seFreelnk(void)
void seFreelLcdlnk(void)
void seFreeCrtink(void)
void seFreeTvink(void)

Description: These functions release the memory all ocations made by the call to selnitlnk().

Prior to calling the seFreel nk() functions, the application must make acal to
seEnablelnk() to hide the ink layer.

Call seFreelnk() to free the ink layer memory associated with the current active surface.

Call seFreelcdink(), seFreeCrtink(), or seFreeTvink() to free the ink layer memory asso-
ciated with the surface indicated in the function name.

Parameters: None.
Return Value: None.

void seEnablelnk(int Enable)
void seEnableLcdInk(int Enable)
void seEnableCrtink(int Enable)
void seEnableTvink(int Enable)

Description: These functions enabl e or disable the hardware ink layer. When enabled, the ink layer will
be visible and when disabled the ink layer will be hidden.

Call seEnablelnk() to enable/disable the ink layer associated with the current active sur-
face.

Call seEnablel cdink(), seEnableCrtink(), and seEnableTvink() to enable/disable the hard-
ware ink layer for the surface indicated by the function name.

Recall that the CRT and TV share the same ink layer. Enabling/disabling the ink layer for
one device will affect the other display aswell.

Parameters: Enable A flag indicating whether to enable or disable theink layer.
Set Enable to FALSE to disable the ink layer or set Enable to TRUE to
enable the ink layer.

Return Value; None.

S1D13806 Programming Notes and Examples
X28B-G-003-04 Issue Date: 01/02/26

Epson Research and Development Page 147
Vancouver Design Center

DWORD seGetInkLinearAddress(void)
DWORD seGetLcdInkLinearAddress(void)
DWORD seGetCrtinkLinearAddress(void)
DWORD seGetTvinkLinearAddress(void)

Description: These routines return the linear address for the hardware ink layer through which the
application can directly access the ink layer memory.

Call seGetlnkLinearAddress() to retrieve the address of the ink layer associated with the
current active surface.

Call seGetL cdinkLinearAddress(), seGetCrtInkLinearAddress(), or seGetTvInkLinearAd-
dress() to retrieve the address of the ink layer associated with the display surface indicated
in the function name.

Parameters: None.

Return Value: Thereturn value isthe linear address of the hardware cursor. A linear address is the 32 bit
offset in CPU address space where the application can directly read or write the hardware
ink layer memory.

DWORD seGetInkOffsetAddress(void)
DWORD seGetLcdInkOffsetAddress(void)
DWORD seGetCrtinkOffsetAddress(void)
DWORD seGetTvInkOffsetAddress(void)

Description: These routines return the offset from the start of display memory to the start of the hard-
wareink layer. Using this offset, an application can use HAL API calls such as seSetWrit-
eDisplayBytes() to access the ink layer memory.

Call seGetlnkOffsetAddress() to get the offset to the ink layer associated with the current
active surface.

Call seGetL cdlnkOffsetAddress(), seGetCrtlnkOffsetAddress(), and seGetTvInkOff-
setAddress() to retrieve the offset to the ink layer for the surface indicated in the function

name.

Parameters: None.

Return Value: Thereturn value is the offset, in bytes, from the start of display memory to the start of ink
layer memory.

Programming Notes and Examples S1D13806

Issue Date: 01/02/26 X28B-G-003-04

Page 148

Epson Research and Development
Vancouver Design Center

void seSetinkColor(int index, DWORD color)
void seSetLcdInkColor(int index, DWORD color)
void seSetCrtinkColor(int index, DWORD color)
void seSetTvinkColor(int index, DWORD color)

Description:

Parameters:

Return Value;

These routines alow the user to set either of the two user definable hardware ink layer
colors.

The hardware ink layer can be thought of as afour color image of which only two colors
can be changed. The non-changeable colors will displays as transparent and inverted col-
ors.

Call seSetlnkColor() to change the colors for the current active surface.

Call seSetl cdInkColor(), seSetCrtinkColor(), or seSetTvinkColor() to change the color
for the surface indicated by the function name.

Note
The hardware cursor and ink layer use the same color registers. Consequently, the cursor
color functions have exactly the same effect as the ink layer color functions.

Index Specifies which of the two changeable colorsto access Valid
valuesfor Index are 0 and 1.
Color The new color to set as the ink layer color.

The color valuesin the dword are arranged as follows:
XXXX XXXX XXXR RRRR xxGG GGGG xxxB BBBB

Where x isdon't care (set to 0), R isfive bits of red intensity, G is six
bits of green intensity and B is five bits of blue intensity.

None.

S1D13806
X28B-G-003-04

Programming Notes and Examples
Issue Date: 01/02/26

Epson Research and Development Page 149
Vancouver Design Center

void seSetInkPixel(long X, longy, DWORD color)
void seSetLcdInkPixel(long x, longy, DWORD color)
void seSetCrtinkPixel(long x, longy, DWORD color)
void seSetTvinkPixel(long x, longy, DWORD color)

Description: These functions are intended for drawing on the hardware ink layer a pixel a atime.

Call seSetInkPixel() to set a pixel in theink layer associated with the current active sur-
face.

Call seSetL cdinkPixel(), seSetCrtlnkPixel(), and seSetTvInkPixel () to set pixelsin theink
layer associated with the display surface indicated in the function name.

Note
SwivelView modes are ignored in these functions. Landscape orientation is used for
(x,y) co-ordinates.

Parameters: X The X co-ordinate of theink layer, in pixels, at which to set the pixel
color. Valid values for x range from 0 to display width - 1.
y TheY co-ordinate of theink layer, in pixels, at which to set the pixel
color. Valid values for y range from O to display height - 1.
Color Specifies which of the four cursor colors to set the pixd to. Valid values
for Color are:

0 - to set the pixel to the solid color O

1 - to set the pixel to the solid color 1

2 - to set the pixel to the transparent color
3 - to set the pixel to the inverted color

Return Value: None.

Programming Notes and Examples S1D13806
Issue Date: 01/02/26 X28B-G-003-04

Page 150

Epson Research and Development
Vancouver Design Center

void seDrawlnkLine(long x1, long y1, long x2, long y2, DWORD color)
void seDrawlLcdInkLine(long x1, long y1, long x2, long y2, DWORD color)
void seDrawCrtinkLine(long x1, long y1, long x2, long y2, DWORD color)
void seDrawTvInkLine(long x1, long y1, long x2, long y2, DWORD color)

Description: These routines draw lines on the hardware ink layer between two pointsin the specified
color.
Call seDrawlnkLine() to draw alinein the hardware ink layer associated with the current
active surface.
Call seDrawL cdIinkLine(), seDrawCrtInkLine(), or seDrawTvInkLing() to draw alinein
the hardware ink layer image associated with the display surface indicated in the function
name.
Note
SwivelView modes are ignored in these functions. Landscape orientation is used for all
co-ordinates.
Parameter: x1 Specifiesthe X co-ordinate of the first endpoint of the line measured in
pixels from the left edge of the display.
yl Specifiesthe Y co-ordinate of the first endpoint of the line measured in
pixels from the top edge of the display.
X2 Specifiesthe X co-ordinate of the second endpoint of the line measured
in pixels from the |eft edge of the display.
y2 Specifiesthe Y co-ordinate of the second endpoint of the line measured
in pixels from the top edge of the display.
Coalor Specifieswhich of the four ink layer colorsto draw the line with Valid
valuesfor Color are:
0 - to draw the linein solid color O
1 - to draw thelinein solid color 1
2 - to draw the line in the transparent color
3 - to draw the line in the inverted color
Return Value: None.
S1D13806 Programming Notes and Examples

X28B-G-003-04

Issue Date: 01/02/26

Epson Research and Development
Vancouver Design Center

Page 151

void seDrawlnkRect(long x1, long y1, long x2, long y2, DWORD color, BOOL SolidFill)
void seDrawlLcdInkRect(long x1, long y1, long x2, long y2, DWORD color, BOOL SolidFill)
void seDrawCrtinkRect(long x1, long y1, long x2, long y2, DWORD color, BOOL SolidFill)
void seDrawTvInkRect(long x1, long y1, long x2, long y2, DWORD color, BOOL SolidFlIIl)

Description: These routines draw rectangles on the hardware ink layer surface. The rectangle may be
drawn asjust a border or as asolid filled area.

Call seDrawlnkRect() to draw arectangle in the hardware ink layer cursor image associ-
ated with the current active surface.

Call seDrawlL cdinkRect(), seDrawCrtInkRect(), or seDrawTvInkRect() to draw a rectan-
glein the hardware ink layer associated with the display surface indicated by the function

name.

Parameter: x1

yl

X2

y2

Color

SolidFill

Return Value; None.

The X co-ordinate for the top left corner of the rectangle measured in
pixels from the left edge of the display surface.

The Y co-ordinate for the top left corner of the rectangle measured in
pixels from the top edge of the display surface.

The X co-ordinate for the bottom right corner of the rectangle measured
in pixels from the |eft edge of the display surface.

TheY co-ordinate for the bottom right corner of the rectangle measured
in pixels from the top edge of the display surface.

Specifies which of the four ink layer colorsto draw the line with. Valid
vaues for Color are:

0 - to draw the rectanglein solid color O

1 - to draw the rectanglein solid color 1

2 - to draw the rectangle to the transparent color
3 - to draw the rectanglein the inverted color

Flags whether to fill the rectangle or to only draw the border.

Set SolidFill to FAL SE to draw only the outline of the rectangle.
Set SolidFill to TRUE to fill the interior of the rectangle.

Programming Notes and Examples
Issue Date: 01/02/26

S1D13806
X28B-G-003-04

Page 152 Epson Research and Development
Vancouver Design Center

14.2.11 Register/Display Memory

The S1D13806 utilizes up to 2M bytes of display memory address space. The S1D13806
contains 1.25M bytes of embedded SDRAM.

In order for an application to directly access the S1D13806 display memory and registers,
the following two functions are provided.

DWORD seGetLinearDisplayAddress(void)

Description: This function returns the linear address for the start of physical display memory.
Parameters: None.
Return Value: Thereturn value is the linear address of the start of display memory. A linear addressisa

32-bit offset, in CPU address space.

DWORD seGetLinearRegAddress(void)

Description: This function returns the linear address of the start of S1D13806 control registers.
Parameters: None.
Return Value: The return value is the linear address of the start of S1D13806 control registers. A linear

addressis a 32-bit offset, in CPU address space.

S1D13806 Programming Notes and Examples
X28B-G-003-04 Issue Date: 01/02/26

Epson Research and Development Page 153
Vancouver Design Center

14.3 Porting LIBSE to a new target platform
Building Epson applications like asimple HelloApp for anew target platform requires the
following:
» HelloApp code.
» 1386HAL library.
» LIBSE library which contains target specific code for embedded platforms.

HelloApp Source code
LIBSE for embedded platforms ——————+—» HelloApp
1386HAL Library

Figure 14-1: Components needed to build 1386 HAL application

For example, when building HELL OAPP.EXE for the x86 windows 32-bit platform, you
need the HEL L OA PP source files, the 1386HAL library and itsinclude files, and some
Standard C library functions (which in this case would be supplied by the compiler as part
of itsrun-timelibrary). Asthisisa 32-bit windows .EXE application, you do not need to
supply start-up code that sets up the chip selects or interrupts, etc... What if you wanted to
build the application for an SH-3 target, one not running windows?

Before you can build that application to load onto the target, you need to build a C library
for the target that contains enough of the target specific code (like putch() and getch()) to
let you build the application. Epson suppliesthe LIBSE for this purpose, but your compiler
may come with one included. Y ou also need to build the 1386HAL library for the target.
Thislibrary is the graphics chip dependent portion of the code. Finally, you need to build
the final application, linked together with the libraries described earlier. The following
examples assume that you have a copy of the complete source code for the S1D13806
utilities, including the makefiles, aswell asacopy of the GNU Compiler v2.8.1 for Hitachi
SH3. These are available on the EPSON Electronics America website at
www.eea.epson.com, or the EPSON Research and Development website at
www.erd.epson.com.

Programming Notes and Examples S1D13806
Issue Date: 01/02/26 X28B-G-003-04

Page 154

Epson Research and Development
Vancouver Design Center

14.3.1 Building the LIBSE library for SH3 target example

In the LIBSE files, there are two main types of files:
» C and assembler files that contain the target specific code.

» makefilesthat describe the build process to construct the library.

The C and assembler files contain some platform setup code (evaluation board communi-
cations, chip selects) and jumps into the main entry point of the C code that is contained in
the applications main() function. For our example, the startup file, which issh3entry.c,
performs some board configuration (board communications and assigning memory blocks
with chip selects) and ajump into the applications main() function.

In the embedded targets, putch (xxxputch.c) and getch (xxxgetch.c) resolve to serial
character input/output. For SH3, much of the detail of handling serial 10 is hidden in the
monitor of the evaluation board, but in generd the primitives are fairly straight forward,
providing the ability to get charactersto/from the seria port.

For our target example, the nmake makefile is makesh3.mk. This makefile calls the Gnu
compiler at a specific location (TOOLDIR), enumerates the list of files that go into the
target and builds a .a library file as the output of the build process.

To build the software for our target exampl e, type the following at the root directory of the
software (i.e. ¢:\1386).

make" TARGETS=SH3" "BUILDS=release"

14.3.2 Building a complete application for the target example

Source code for this example isavailable in thefile 86_sh3_example.c (part of the file
86sample.zip). Thisfileis available on the internet at www.erd.epson.com.

S1D13806
X28B-G-003-04

Programming Notes and Examples
Issue Date: 01/02/26

Epson Research and Development Page 155
Vancouver Design Center

15 Sample Code

Example source code demonstrating programming the S1D13806 using the HAL library is
available on the internet at www.erd.epson.com.

Programming Notes and Examples S1D13806
Issue Date: 01/02/26 X28B-G-003-04

Page 156 Epson Research and Development
Vancouver Design Center

THIS PAGE LEFT BLANK

S1D13806 Programming Notes and Examples
X28B-G-003-04 Issue Date: 01/02/26

	S1D13806 Embedded Memory Display Controller
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	2 Initialization
	Table 2�1: S1D13806 Initialization Sequence�

	3 Memory Models
	3.1 Display Buffer Location
	3.2 Memory Organization for 4 Bpp (16 Colors/16 Gray Shades)
	Figure 3�1: Pixel Storage for 4 Bpp in One Byte of Display Buffer

	3.3 Memory Organization for 8 Bpp (256 Colors/16 Gray Shades)
	Figure 3�2: Pixel Storage for 8 Bpp in One Byte of Display Buffer

	3.4 Memory Organization for 16 Bpp (65536 Colors/64 Gray Shades)
	Figure 3�3: Pixel Storage for 16 Bpp in Two Bytes of Display Buffer

	4 Look-Up Table (LUT)
	4.1 Registers
	4.2 Look-Up Table Organization
	Table 4�1: Look-Up Table Configurations
	4.2.1 Color Modes
	Table 4�2: Suggested LUT Values to Simulate VGA Default 16 Color Palette
	Table 4�3: Suggested LUT Values to Simulate VGA Default 256 Color Palette�

	4.2.2 Gray Shade Modes
	Table 4�4: Suggested LUT Values for 4 Bpp Gray Shade

	5 Virtual Displays
	5.1 Virtual Display
	Figure 5�1: Viewport Inside a Virtual Display
	5.1.1 Registers
	5.1.2 Examples

	5.2 Panning and Scrolling
	5.2.1 Registers
	Table 5�1: Number of Pixels Panned When Start Address Changed By 1
	Table 5�2: Active Pixel Pan Bits

	5.2.2 Examples

	6 Power Save Mode
	6.1 Overview
	6.2 Registers
	6.2.1 Enabling Power Save Mode
	6.2.2 Power Save Status Bits

	6.3 Enabling Power Save Mode
	6.4 Disabling Power Save Mode

	7 LCD Power Sequencing
	7.1 Enabling the LCD Panel
	7.2 Disabling the LCD Panel

	8 Hardware Cursor/Ink Layer
	8.1 Introduction
	8.2 Registers
	Table 8�1: Ink/Cursor Mode
	Table 8�2: Cursor/Ink Start Address Encoding

	8.3 Initialization
	8.3.1 Memory Considerations
	8.3.2 Examples
	Table 8�3: LCD Hardware Cursor Initialization Sequence�
	Table 8�4: Ink Layer Start Address Encoding
	Table 8�5: LCD Ink Layer Initialization Sequence�

	8.4 Writing Cursor/Ink Layer Images
	8.4.1 Hardware Cursor/Ink Layer Data Format
	Figure 8�1: Hardware Cursor/Ink Layer Data Format
	Table 8�6: Ink/Cursor Color Select

	8.4.2 Cursor Image
	8.4.3 Ink Layer Image

	8.5 Cursor Movement
	8.5.1 Move Cursor in Landscape Mode (no rotation)
	8.5.2 Move Cursor in SwivelView 90˚ Rotation
	8.5.3 Move Cursor in SwivelView 180˚ Rotation
	8.5.4 Move Cursor in SwivelView 270˚ Rotation

	9 SwivelView™
	9.1 S1D13806 SwivelView
	9.2 Registers
	Table 9�1: SwivelView Enable Bits
	Table 9�2: LCD Memory Address Offset Values
	Table 9�3: LCD Display Start Address Values

	9.3 Limitations
	9.4 Examples
	9.5 Simultaneous Display Considerations

	10 2D BitBLT Engine
	10.1 Registers
	Table 10�1: BitBLT ROP Code/Color Expansion Function Selection
	Table 10�2: BitBLT Operation Selection
	Table 10�3: BitBLT Source Start Address Selection

	10.2 BitBLT Descriptions
	10.2.1 Write BitBLT with ROP
	Table 10�4: Possible BitBLT FIFO Writes

	10.2.2 Color Expand BitBLT
	Table 10�5: Possible BitBLT FIFO Writes

	10.2.3 Color Expand BitBLT With Transparency
	10.2.4 Solid Fill BitBLT
	10.2.5 Move BitBLT in a Positive Direction with ROP
	Figure 10�1: Move BitBLT Usage

	10.2.6 Move BitBLT in Negative Direction with ROP
	10.2.7 Transparent Write BitBLT
	Table 10�6: Possible BitBLT FIFO Writes

	10.2.8 Transparent Move BitBLT in Positive Direction
	10.2.9 Pattern Fill BitBLT with ROP
	10.2.10 Pattern Fill BitBLT with Transparency
	10.2.11 Move BitBLT with Color Expansion
	10.2.12 Transparent Move BitBLT with Color Expansion
	10.2.13 Read BitBLT
	Table 10�7: Possible BitBLT FIFO Reads

	10.3 S1D13806 BitBLT Synchronization
	10.4 S1D13806 BitBLT Known Limitations
	10.5 Sample Code

	11 CRT/TV Considerations
	11.1 CRT Considerations
	11.1.1 Generating CRT timings with 1386CFG
	11.1.2 DAC Output Level Selection
	11.1.3 Examples

	11.2 TV Considerations
	11.2.1 NTSC Timings
	11.2.2 PAL Timings
	11.2.3 TV Filters
	11.2.4 Examples

	11.3 Simultaneous Display

	12 MediaPlug
	12.1 Programming
	12.2 Considerations

	13 Identifying the S1D13806
	14 Hardware Abstraction Layer (HAL)
	14.1 API for 1386HAL
	Table 14�1: HAL Functions�

	14.2 Initialization
	14.2.1 General HAL Support
	14.2.2 Advanced HAL Functions
	14.2.3 Surface Support
	14.2.4 Register Access
	14.2.5 Memory Access
	14.2.6 Color Manipulation
	14.2.7 Virtual Display
	14.2.8 Drawing
	14.2.9 Hardware Cursor
	14.2.10 Ink Layer
	14.2.11 Register/Display Memory

	14.3 Porting LIBSE to a new target platform
	Figure 14�1: Components needed to build 1386 HAL application
	14.3.1 Building the LIBSE library for SH3 target example
	14.3.2 Building a complete application for the target example

	15 Sample Code

